• Title/Summary/Keyword: 지진피해 평가

Search Result 258, Processing Time 0.023 seconds

A Preliminary Study of the Seismic Damage Estimation for Harbor Sites (항만 구역 지진피해예측 평가방안에 관한 예비 연구)

  • Choi, Seung-Ho;Kim, Han-Saem;Yoo, Seung-Hoon;Chung, Chung-Ki;Jang, In-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.45-55
    • /
    • 2011
  • In this study, the state of the art and characteristics of major Korean port structures were investigated and analyzed. Damage of port structures during earthquakes, evaluation systems of seismic damage and seismic designs have also been investigated. Based on the research, a methodology of seismic damage estimation was proposed considering geotechnical information and the characteristics of the fragility of port structures.

A Seismic Capacity of R/C Building Damaged by the 2016 Gyeongju Earthquake Based on the Non-linear Dynamic Analysis (비선형동적해석에 의한 2016년 경주지진에서 지진피해를 받은 R/C 건물의 내진성능에 관한 연구)

  • Jung, Ju-Seong;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • On September 12, 2016, the Gyeongju District was strongly shaken with M=5.8, which was the largest one since measured by the actual seismometer in Korea, and some buildings were damaged. The field survey of reinforced concrete school buildings in the affected area was carried out, and their residual seismic capacities(R) were estimated based on the Japanese Standard for post-earthquake damage evaluation. In this study, the M school, which was greatly damaged by the 2016 Gyeongju Earthquake, was selected, and its damage level was evaluated on the basis of the Japanese Standard. The seismic capacity of the M school was also evaluated using the nonlinear dynamic analysis, and relationships between its damage level and seismic capacity was also conducted to investigate causes of earthquake damage. The damage level of M school was classified into light with R=88.2%. The result of the dynamic analysis agreed reasonably well with the damage of M school sustained by the 2016 Gyeongju earthquake. This will provide fundamental data for earthquake preparedness measures, such as the seismic rehabilitation of low-rise reinforced concrete buildings in Korea.

A Study on Earthquke Damage Estimation of Non Precede Designed Reinforced Concrete Apartment in Korea (국내 비내진 설계 철근콘크리트 아파트에 대한 지진피해 예측 연구)

  • Kwon, Ki-Hyuk;Ko, Yong-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.95-105
    • /
    • 2005
  • Korea is located away from plate boundaries which are not safe from earthquakes. However, having witnessed the large-scale earthquake in the Tangshan region in 1976 deemed as a safe plate, it should not be assured that Korea is absolutely safe from earthquakes. In addition, many seismologists have claimed that there indeed is a high possibility of earthquakes above mid scale that would occur in Korea. Because it is impossible to prevent earthquake, studies on seismic design and earthquake disaster control system are widely being conducted. However, studies on early response to earthquakes or recovery process are still very limited, and only a few studies for establishing earthquake damage evaluation system are being conducted. Thus, this study aimed to present essential data for establishing earthquake damage evaluation system that takes into account the real situation of structures in Korea. In this study, a nonseimically reinforced concrete apartment structure in Gangnamgu was selected as an standard type of such structures and its earthquake damage was estimated. The result of damage evaluation based on the derivation of vulnerability function and realtive story displacement was compared to that abtained using HAZUS Program Vulnerability Function.

대만 지진피해평가 system에 대한 검토

  • Gang, Ik-Beom
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.82-89
    • /
    • 2003
  • 대만 국가과학위원회에서는 1998년에 지진재해 구조물 피해 사회경제적 손실을 위한 연구를 위해 HAZ-Taiwan 연구 project를 착수하였다. 관련 software인 TELES(Taiwan Earthquake Loss Estimation System)는 3가지 목표를 위해 다양한 입력 및 분석 module로 구성되어 있다. 1. 피해 지진후 재해 평가 2. 재해복구계획 및 가상 시나리오 제공 3. 재해보험을 포함한 재해대응방안 제시 본 논문은 초기재해평가에 이용될 분석 modules개발 및 적용에 초점을 맞추고 있으며, 분석 module은 지반운동강도 액상화 건물피해 및 사상자 평가분석을 포함하고 있다.

  • PDF

A Study on the Deduction of performance Point of Nonseismically Designed Reinforced Concrete Apartment (비내진 설계된 철근콘크리트 아파트의 성능점 도출에 관한 연구)

  • Kwon, Ki-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.85-93
    • /
    • 2005
  • It has been commonly assumed that during the 21st century, the korean peninsula may suffer huge earthquake damage to people, society, and economic system. The recent report of "Seoul Earthquake Response model development" conducted by the city of Seoul indicated that a magnitude 6.3 earthquake possibly hit Seoul, the capital of Korea. However, due to the insufficient amount of study on seismic performance of structures reflecting the various types of element peculiar to Korea application of the currently available earthquake damage evaluation methods has limitations. In order to conduct various studies on seismic hazards that are suitable for the actual conditions in Korea, therefore, fundamental studies first have to be properly conducted. The purpose of this study is to serve as the basis of establishing a reliable earthquake damage estimation system, and to provide essential data for the seismic damage evaluation of nonseismically reinforced concrete apartment structures. In this study, a standard type of nonseismically reinforced concrete apartments has been determined based on an extensive survey and careful review of such structures in Korea, and their performance level on seismic loading has been estimated.

A Methodology of Seismic Damage Assessment Using Capacity Spectrum Method (능력 스펙트럼법을 이용한 건물 지진 손실 평가 방법)

  • Byeon, Ji-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.1-8
    • /
    • 2005
  • This paper describes a new objective methodology of seismic building damage assessment which is called Advanced Component Method(ACM). ACM is a major attempt to replace the conventional loss estimation procedure, which is based on subjective measures and the opinions of experts, with one that objectively measures both earthquake intensity and the response ol buildings. First, response of typical buildings is obtained analytically by nonlinear seismic static analysis, push-over analyses. The spectral displacement Is used as a measure of earthquake intensity in order to use Capacity Spectrum Method and the damage functions for each building component, both structural and non-structural, are developed as a function of component deformation. Examples of components Include columns, beams, floors, partitions, glazing, etc. A repair/replacement cost model is developed that maps the physical damage to monetary damage for each component. Finally, building response, component damage functions, and cost model were combined probabilistically, using Wonte Carlo simulation techniques, to develop the final damage functions for each building type. Uncertainties in building response resulting from variability in material properties and load assumptions were incorporated in the Latin Hypercube sampling technique. The paper also presents and compares ACM and conventional building loss estimation based on historical damage data and reported loss data.

Seismic Reliability Assessment of the Korean 345 kV Electric Power Network considering Parallel Operation of Transformers (변압기의 병렬 운전을 고려한 국내 345kV 초고압 전력망의 지진 재해 신뢰성 평가)

  • Park, Won-Suk;Park, Young-Jun;Cho, Ho-Hyun;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.13-20
    • /
    • 2006
  • Substations in electric power transmission network systems (EPTS) operate using several transformers in parallel to increase the efficiency in terms of stability of energy supply. We present a seismic reliability assessment method of EPTS considering the parallel operation of transformers. Two methods for damage state model are compared in this paper: bi-state and multi-damage model. Simulation results showed that both models yielded similar network reliability indices and the reliability indices of the demand nodes using hi-state model exhibited higher damage probability. Particularly, the corresponding EENS (Expected Energy Not Supplied) index was significantly larger than that of the multi-damage state.

Real-time Seismic Damage Estimation for Harbor Site Considering Ground Motion Amplification Characteristics (항만지역의 지반증폭 특성을 반영한 실시간 지진피해 평가방안 수립)

  • Kim, Han-Saem;Yoo, Seung-Hoon;Jang, In-Sung;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.55-65
    • /
    • 2012
  • The purpose of this study is to estimate seismic damage for harbor site considering dynamic amplification characteristics. First of all, a series of ground response analysis is performed and then correlation equations between rock outcrop accelerations and peak ground accelerations (PGAs) are determined. These equations are saved into DB and when an earthquake occurs, PGAs are determined by them as soon as possible. For earthquake events, seismic damage grades of harbor structures are determined by using the correlated PGAs and fragility curves of harbor structures in real time. In this study, seismic damage was estimated and classified into several grades by applying two hypothetical earthquakes.

Construction of Earthquake Disaster Management System Based on Architectural Structure Analysis (건축구조해석기반 지진재해관리정보체계 구축)

  • Kim, Seong-Sam;Cho, Eun-Rae;Yoon, Jung-Bae;Yoo, Hwan-Hee
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.293-299
    • /
    • 2007
  • 자연재해 중 시설 파괴 규모나 인위적 경제적 피해정도에 있어서 지진은 직접적인 피해가 엄청난 재난이다. 특히 현대사회의 산업화로 도시는 인구가 집중되고 시설물이 대형화되면서 그 기능이 복잡다양해지고 있어 지진이 발생할 경우 도시의 사회 경제활동이 장기간 마비되는 사태가 발생하기도 한다. 본 논문에서는 건축물 구조해석에 의한 내진평가체계를 수립하고 내진평가에 필요한 다양한 자료들을 GIS DB화하여 건물의 내진성능평가를 수행함으로써, 개별 건물의 지진위험등급 산정과 GIS기반으로 지진위험도를 체계적으로 평가할 수 있는 정보체계를 구축하여 지진발생시 피해규모 및 범위를 추정할 수 있는 정보체계구축의 가능성을 제시하였다.

  • PDF

Evaluation of tsunami inundation using artificial intelligence (인공지능 기술을 활용한 지진해일 범람구역 산정)

  • Kim, Chang-Hee;Song, Min-Jong;Kim, Byung-Ho;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.216-216
    • /
    • 2021
  • 해저지진, 해저붕괴 및 해저화산분출 등에 발생되는 지진해일은 파장이 수십에서 수백 km에 이르는 장파로서 에너지 손실없이 먼 거리를 전파할 수 있으며, 수심이 상대적으로 얕은 해안가에 도달하면 범람에 의해 인명 및 재산피해를 야기시킬 수 있다. 예를 들어, 2004년 12월 26일에 발생한 수마트라 지진해일은 약 30만명의 인명피해와 약 10조원의 재산피해를 가져왔으며, 2011년 3월 11일에 발생한 동일본 지진해일은 약 2만명의 인명피해와 약 330조의 재산피해를 유발시켰다. 더욱이, 지진해일에 의해 폭발한 후쿠시마 원자력발전소에서의 방사능 유출은 10년이 지난 현재도 생태계 교란, 방사능 피폭 등의 피해를 일으키고 있다. 우리나라도 1983년 5월 26일 발생한 동해 중부지진해일에 의해 삼척시 임원항 및 인근에서 인명피해(1명 사망, 2명 실종)와 약 2억원의 재산피해가 발생하였다. 최근, 4차 산업혁명으로서 빅데이터를 기반으로 한 다양한 인공지능기술이 개발되고 있으며, 많은 분야에서 이 기술을 적용하고자 노력하고 있다. 특히, 과학 및 공학분야에서도 이를 융합하는 연구 및 활용하는 사례가 증가하고 있다. 본 연구에서는 1983년 발생한 중부지진해일에 의해 인명 및 재산피해가 발생한 임원항을 대상으로 지진해일 수치모형실험을 수행하며, 수치모형실험 결과를 토대로 인공지능 모델 중 합성신경망 (Convolution Neural Network)을 활용하여 인공지능을 통한 지진해일 범람구역을 산정 및 평가하고자 한다.

  • PDF