• Title/Summary/Keyword: 지진피해추정

Search Result 53, Processing Time 0.029 seconds

Fragility Analysis of Staggered Wall Structures (격간벽 구조의 취약도 해석)

  • Beak, Donggirl;Kwon, Kwangho;Kim, Jinkoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.397-404
    • /
    • 2012
  • Fragility curves show the probability of a system reaching a limit state as a function of some measure of seismic intensity. To obtain fragility curves of six and twelve story staggered wall structures with middle corridor, incremental dynamic analyses were carried out using twenty two pairs of earthquake records, and their failure probabilities for various intensity of seismic load were investigated. The performances of staggered wall structures with added columns along the central corridor and the structures with their first story walls replaced by columns were compared with those of the regular staggered wall structures. Based on the analysis results it was concluded that staggered wall structures with central columns have the largest safety margin for the same level of seismic load.

Prediction of recent earthquake magnitudes of Gyeongju and Pohang using historical earthquake data of the Chosun Dynasty (조선시대 역사지진자료를 이용한 경주와 포항의 최근 지진규모 예측)

  • Kim, Jun Cheol;Kwon, Sookhee;Jang, Dae-Heung;Rhee, Kun Woo;Kim, Young-Seog;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.119-129
    • /
    • 2022
  • In this paper, we predict the earthquake magnitudes which were recently occurred in Gyeongju and Pohang, using statistical methods based on historical data. For this purpose, we use the five-year block maximum data of 1392~1771 period, which has a relatively high annual density, among the historical earthquake magnitude data of the Chosun Dynasty. Then, we present the prediction and analysis of earthquake magnitudes for the return level over return period in the Chosun Dynasty using the extreme value theory based on the distribution of generalized extreme values (GEV). We use maximum likelihood estimation (MLE) and L-moments estimation for parameters of GEV distribution. In particular, this study also demonstrates via the goodness-of-fit tests that the GEV distribution can be an appropriate analytical model for these historical earthquake magnitude data.

Seismic Performance based Fragility Analysis of Bridge Structure in terms of Soil Conditions (지반조건을 고려한 교량의 내진성능기반 취약도 해석)

  • Lee, Dae-Hyoung;Hong, Hyung-Gi;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.73-76
    • /
    • 2008
  • The damage of earthquakes have to achieve by probabilistic evaluation because of uncertainty of earthquake. Fragility analysis is a useful tool for predicting the probability of damage induced by the probable earthquake. This paper presents the probability of damage as a function of peak ground acceleration and estimates the probability of five damage levels for the pier of prestressed concrete (PSC) bridge subjected to given ground acceleration. At each 100 artificial earthquake motions were generated in terms of soil conditions, and nonlinear time domain analyses were performed for the damage states of the pier of PSC bridge structures. These damage states are described by displacement ductility result from seismic performance based on existing research results. Using the damage states and ground motion parameters, five fragility curves for the pier of PSC bridges with five types of dominant frequencies were constructed assuming a log-nomal distribution. It was found that there was a significant effect on the fragility curves due to the dominant frequencies.

  • PDF

Estimation for the effect of untreated effluent on river's water quality (환경기초시설 미처리수 방류에 따른 하천 영향 예측)

  • Hun Kyun Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.491-491
    • /
    • 2023
  • 환경기초시설은 인간의 활동으로 인하여 발생하는 오염물질에 대한 적극적인 대응시설이다. 이는 환경기초시설로 유입되는 오염물의 경우 농도와 양적인 측면에서 부하가 상당히 크다는 것을 알 수 있으며 이러한 오염물질들이 제대로 처리되지 못하면 심각한 환경오염문제를 초래함은 자명한 사실이다. 환경기초시설 중 하폐수처리장은 수계관리에 있어 대표적인 점오염원으로 해당 방류수역의 적절한 수질을 유지하기 위해 하폐수처리장의 방류수는 수질기준을 엄격하게 준수함을 넘어 수질기준보다 훨씬 낮은 수준으로 방류수의 농도를 유지함이 바람직하다. 재난 등으로 인하여 이러한 하폐수처리장의 정상운영에 문제가 발생하였을 때 해당 방류수역에 심각한 영향을 주게 된다. 실제 경주 및 포항지진, 태풍 매미 등 자연재해로 인한 하폐수처리장의 피해가 다수 발생하여 해당 방류수역에 많은 영향을 미쳤을 것으로 추정되나 과거 피해를 입은 환경기초시설의 경우 시설 자체에 대한 피해정도나 복구상황에 대한 조사 및 후속보고는 있었으나 하페수처리장의 기능상실에 따른 해당 수역의 오염정도나 피해에 대한 보고는 없었다. 이는 하폐수처리장의 기능상실이 해당 수역에 미치는 영향을 정확하게 파악하지 못함으로 실질적인 피해 정도를 가늠할 수 없게 만들었을 뿐만 아니라 향후 비슷한 피해가 발생하였을 때 어떠한 대처가 필요한지에 대한 계획수립에 도움을 줄 수 없게 되는 결과를 초래하였다. 본 연구에서는 폐수처리시설이 여러변수에 의해 피해를 입어 정상적인 가동이 어려운 상황이 발생하여 유입수가 처리되지 않고 방류되었을 때 방류수역에 미치는 영향을 모의하였다. 낙동강으로 처리수를 직접 방류하는 달성2차 산업단지 폐수처리장을 대상으로 모의를 진행하였고 모의결과는 하폐수처리장의 미처리수 방류에 있어 가장 중요한 점은 방류수의 수질상태 보다는 유량이었음을 알 수 있었다. 본 연구의 결과는 하폐수처리장의 기능상실에 따른 피해정도를 가늠함으로 향후 하폐수처리장의 기능상실에 대처할 수 있는 적절한 대응대책 수립에 기초적인 자료를 제공할 것으로 기대된다.

  • PDF

A Proposal of Rapid-Screening Method for Seismic Capacity Evaluation of Low-Rise R/C Buildings - Part 1. Concept of Seismic Capacity Evaluation - (저층 철근콘크리트 건물의 간이 내진성능 평가법 제안 - Part 1. 내진성능평가의 개념 -)

  • Lee, Kang-Seok;Kim, Yong-In;Wi, Jeong-Doo;Hwang, Ki-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.463-464
    • /
    • 2009
  • This study proposes a new rapid-screening method for more reasonably evaluation the seismic capacities of low-rise RC buildings controlled by both shear and flexure. At the same time, this develops the equation of damage judgement and seismic capacity evaluation for quantitatively evaluating the seismic capacities. Using this evaluating method, it is impossible to estimate the evaluation score and earthquake-damage degree confronted with this and evaluate for efficiently the seismic capacities

  • PDF

실시간 예ㆍ검지 시스템에 의한 철도방재 기술현황

  • 정승용;박영곤;김수삼
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.6-13
    • /
    • 2003
  • 최근 세계적인 기상이변으로 인한 재해가 갈수록 증가되고 있으며, 지구 온난화 등 이상기온에 따른 국지성 호우의 발생이 증가함에 따라 이러한 기상이변에 대한 철도재해를 미연에 방지할 수 있는 체계화된 방재시스템 구축이 절실히 요구되고 있다. 철도재해 발생시 경고체계와 우회로 부재에 따른 막대한 경제적 손실이 예상되고 있으므로 강우, 지진 등에 의한 재해 위험에 대해 실질적인 감시관리시스템과 운전규제기준의 재정립이 필요한 실정이다. 특히 국내에서 자주 발생하는 대표적인 재해원인으로는 태풍을 들 수 있는데 작년 8월 우리나라를 관통한 태풍 루사(RUSA)의 경우 일 최다 강우량 870.5mm, 1시간 최다강우량100.5mm를 기록하며, 총 48개소의 철도피해지역과 이로 인한 복구비용은 약 1,472억원 정도로 추정되었고, 경부선 등 전국 8개노선 48개소의 열차운행이 일시 중단된 바 있다. (중략)

International Research Trend on Mountainous Sediment-related Disasters Induced by Earthquakes (지진 유발 산지토사재해 관련 국외 연구동향 분석)

  • Lee, Sang-In;Seo, Jung-Il;Kim, Jin-Hak;Ryu, Dong-Seop;Seo, Jun-Pyo;Kim, Dong-Yeob;Lee, Chang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.431-440
    • /
    • 2017
  • The 2016 Gyeongju Earthquake ($M_L$ 5.8) (occurred on September 12, 2016) and the 2017 Pohang Earthquake ($M_L$ 5.4) (occurred on November 15, 2017) caused unprecedented damages in South Korea. It is necessary to establish basic data related to earthquake-induced mountainous sediment-related disasters over worldwide. In this study, we analyzed previous international studies on the earthquake-induced mountainous sediment-related disasters, then classified research areas according to research themes using text-mining and co-word analysis in VOSviewer program, and finally examined spatio-temporal research trends by research area. The result showed that the related-researches have been rapidly increased since 2005, which seems to be affected by recent large-scale earthquakes occurred in China, Taiwan and Japan. In addition, the research area related to mountainous sediment-related disasters induced by earthquakes was classified into four subjects: (i) mechanisms of disaster occurrence; (ii) rainfall parameters controlling disaster occurrence; (iii) prediction of potential disaster area using aerial and satellite photographs; and (iv) disaster risk mapping through the modeling of disaster occurrence. These research areas are considered to have a strong correlation with each other. On the threshold year (i.e., 2012-2013), when cumulative number of research papers was reached 50% of total research papers published since 1987, proportions per unit year of all research areas should increase. Especially, the proportion of the research areas related to prediction of potential disaster area using aerial and satellite photographs is highly increased compared to other three research areas. These trends are responsible for the rapidly increasing research papers with study sites in China, and the research papers examined in Taiwan, Japan, and the United States have also contributed to increases in all research areas. The results are could be used as basic data to present future research direction related to mountainous sediment-related disasters induced by earthquakes in South Korea.

Relation of Intensity, Fault Plane Solutions and Fault of the January 20, 2007 Odaesan Earthquake (ML=4.8) (2007년 1월 20일 오대산 지진(ML=4.8)의 진도, 단층면해 및 단층과의 관계)

  • Kyung, Jai-Bok;Huh, Seo-Yun;Do, Ji-Yong;Cho, Deok-Rae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.202-213
    • /
    • 2007
  • The Odaesan earthquake $(M_L=4.8)$ occurred near Mt. Odae, Jinbu-Myon, Pyongchang-Gun, Kangwon Province on January 20, 2007. It has a shallow focal depth about 10 km. Its felt area covers most of the southern peninsula except some southern and western inland area. The maximum MM intensity was VI in the areas including Jinbu, Doam, Kangreung, Jumunjin, and Pyongchang. In these areas, there was a very strong shaking that caused several cracks on the walls of buildings and houses, slates falling off the roof, tiles being off the wall, things falling off the desk, and rock falling from the mountains. In order to get fault plane solutions, grid searches were performed by fitting distributions of P-wave first-motion polarities and SH/P amplitude ratios for each event. The results showed that the main shock represented right-lateral strike-slip sense and two aftershocks, reverse sense. It seems that the seismogenic fault may be the NNE-SSW trending Weoljeongsa fault near the epicenter based on the distribution of epicenters (foreshock, main shock, and aftershocks), damage area, and fault plane solution. The distribution of the epicenters indicates that the length of the subsurface rupture is estimated to be about 2 km.

Dangerous Area Prediction Technique for Preventing Disaster based on Outside Sensor Network (실외 센서네트워크 기반 재해방지 시스템을 위한 위험지역 예측기법)

  • Jung, Young-Jin;Kim, Hak-Cheol;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.775-788
    • /
    • 2006
  • Many disaster monitoring systems are constantly studied to prevent disasters such as environmental pollution, the breaking of a tunnel and a building, flooding, storm earthquake according to the progress of wireless telecommunication, the miniaturization of terminal devices, and the spread of sensor network. A disaster monitoring system can extract information of a remote place, process sensor data with rules to recognize disaster situation, and provide work for preventing disaster. However existing monitoring systems are not enough to predict and prevent disaster, because they can only process current sensor data through utilizing simple aggregation function and operators. In this paper, we design and implement a disaster prevention system to predict near future dangerous area through using outside sensor network and spatial Information. The provided prediction technique considers the change of spatial information over time with current sensor data, and indicates the place that could be dangerous in near future. The system can recognize which place would be dangerous and prepare the disaster prevention. Therefore, damage of disaster and cost of recovery would be reduced. The provided disaster prevention system and prediction technique could be applied to various disaster prevention systems and be utilized for preventing disaster and reducing damages.

GIS-based Disaster Management System for a Private Insurance Company in Case of Typhoons(I) (지리정보기반의 재해 관리시스템 구축(I) -민간 보험사의 사례, 태풍의 경우-)

  • Chang Eun-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.1 s.112
    • /
    • pp.106-120
    • /
    • 2006
  • Natural or man-made disaster has been expected to be one of the potential themes that can integrate human geography and physical geography. Typhoons like Rusa and Maemi caused great loss to insurance companies as well as public sectors. We have implemented a natural disaster management system for a private insurance company to produce better estimation of hazards from high wind as well as calculate vulnerability of damage. Climatic gauge sites and addresses of contract's objects were geo-coded and the pressure values along all the typhoon tracks were vectorized into line objects. National GIS topog raphic maps with scale of 1: 5,000 were updated into base maps and digital elevation model with 30 meter space and land cover maps were used for reflecting roughness of land to wind velocity. All the data are converted to grid coverage with $1km{\times}1km$. Vulnerability curve of Munich Re was ad opted, and preprocessor and postprocessor of wind velocity model was implemented. Overlapping the location of contracts on the grid value coverage can show the relative risk, with given scenario. The wind velocities calculated by the model were compared with observed value (average $R^2=0.68$). The calibration of wind speed models was done by dropping two climatic gauge data, which enhanced $R^2$ values. The comparison of calculated loss with actual historical loss of the insurance company showed both underestimation and overestimation. This system enables the company to have quantitative data for optimizing the re-insurance ratio, to have a plan to allocate enterprise resources and to upgrade the international creditability of the company. A flood model, storm surge model and flash flood model are being added, at last, combined disaster vulnerability will be calculated for a total disaster management system.