• 제목/요약/키워드: 지진의 등가정적해석

Search Result 59, Processing Time 0.03 seconds

Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System (등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토)

  • 송호산;전대한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model to represent the resistance of the structure to deformation as it respond in its predominant mode. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. Comparing the peak inelastic response of a moment resisting reinforced concrete frames and an equivalent SDOF model, the adequacy and the validity of the converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector \ulcorner$_1{\beta}$${_1{\mu}}=1$. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.

Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation (내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법)

  • Cho, Chang-Geun;Kim, Young-Sang;Bae, Soo-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.175-184
    • /
    • 2006
  • Two methods of the nonlinear static pushover analysis have been presented for the performance-based seismic design and evaluation of MDOF continuous bridges. Guidelines for buildings presented in FEMA-273 applying the Displacement Coefficient Method (DCM) and in ATC applying the Capacity Spectrum Method(CSM) have been modified for MDOF bridges. Two methods are compared with the time- history analysis. The lateral load distribution pattern for seismic loads has been examined in the static pushover analysis. The force-based fiber frame finite element has been implemented in the modeling of reinforced concrete piers.

Scale-Up Factor for Seismic Analysis of Building Structure for Various Coordinate Systems (건축구조물의 지진해석에서 좌표축의 설정에 따른 보정계수 산정법)

  • Yu, Il-Hyang;Lee, Dong-Guen;Ko, Hyun;Kim, Tae-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.33-47
    • /
    • 2007
  • In a practical engineering, the equivalent static analysis (E.S.A) and the response spectrum analysis (R.S.A) are generally used for the seismic analysis. The base shears obtained from the E.S.A are invariable no matter how the principal axes of building structures are specified on an analysis program while those from the R.S.A are variable. Accordingly, the designed member size may be changed by how an engineer specify the principal axes of a structure when the R.S.A is used. Moreover, the base shears in the normal direction to the excitation axis are sometimes produced even when an engineer performs a response spectrum analysis in only one direction. This tendency makes the base shear, which is used to calculate the scale-up factor, relatively small. Therefore the scale-up factor becomes larger and it results in uneconomical member sizes. To overcome these disadvantages of the R.S.A, an alternative has been proposed in this study. Three types of example structures were adapted in this study, i.e. bi-direction symmetric structure, one-direction antisymmetric structure and bi-direction antisymmetric structure. The seismic analyses were performed by rotating the principal axes of the example structures with respect to the global coordinate system. The design member forces calculated with the scale-up factor used in the practice were compared with those obtained by using the scale-up factor proposed in this study. It can be seen from this study that the proposed method for the scale-up factor can provide reliable and economical results regardless of the orientation of the principal axes of the structures.

The Consideration of the Necessity of Seismic Retrofitting for Existing High Speed Rail Bridge in Accordance with Design Guidelines Improvements (설계기준 개선에 따른 기존 고속철도 교량 내진보강 필요성 고찰)

  • Kim, Do-Kyoun;Jang, Han-Teak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.445-453
    • /
    • 2013
  • This paper was calculated the earthquake load using ELFP(Equivalent Lateral Force Procedure) and RSA(Response Spectrum Analysis) for PSC Box Girder representative bridges by the Phase of KTX designed by ELFP and verified the difference of these analyses. It have been modeled 3 dimensional FE model of 5 bridges using a commercial FEM program for the comparison of these analyses using a commercial FEM program and were compared the earthquake load. It has been to confirm the increase of the difference ELFP of RSA calculated to seismic ground acceleration according to the ground condition and natural period. It is mean that the necessity of seismic reinforcement due to the application of a larger of earthquake load than designed earthquake load form the seismic performance evaluation result according to the difference of calculated earthquake loads.

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 층지진하중)

  • 이동근;신용우
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.123-132
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used because of its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumptions that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode and the effect of higher modes is included in an approximate manner. Therefore the prediction of dynamic responses of structures using the equivalent lateral force procedure is not reliable when the effect of higher vibration modes on the dynamic behavior is significant. In this study, design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum analysis are examined. From these results an improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes are proposed.

  • PDF

Nonlinear Static Analysis for Seismic Performance Evaluation of Multi-Span Bridges Considering Effect of Equivalent SDOF Methods (등가단자유도 방법의 영향을 고려한 다경간 교량의 내진성능 평가를 위한 비탄성 정적해석)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.473-484
    • /
    • 2006
  • The capacity spectrum method (CSM) can be used to simply estimate the maximum displacement response of the nonlinear structures. To evaluate seismic performance of multi-span bridges using the CSM, the representative response for structural system should be derived from the multi-degree-of-freedom (MDOF) responses by using the equivalent single-degree-of-freedom (ESDOF) method. The ESDOF method is used to calculate the capacity curve of the structural system from the pushover curves of all piers or structural members estimated by the pushover analysis. In order to evaluate an accuracy of ESDOF methods used in the CSM, the maximum displacements estimated by the CSM incorporating the several ESDOF methods are compared to those by the inelastic time-history analysis for several artificial earthquakes corresponding to the design spectrum.

Structural Integrity Evaluation of Nuclear Seismic Category IIA 2" Globe Valve for Seismic Loads (지진하중을 받는 원자력 내진등급 2A 글로브 밸브의 구조 건전성 평가)

  • Chung, Chul-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1500-1505
    • /
    • 2008
  • To evaluate the structural integrity of the nuclear seismic category IIA bellows seal 2" globe valve under the seismic service conditions the seismic analysis was performed in accordance with ASME, section III, ND-3500, 1989 edition. The finite element computer program, ANSYS, Version 10.0, is used to perform both a mode frequency analysis and an equivalent static seismic analysis of the valve assembly. The mode frequency analysis results show the fundamental natural frequency is greater than 33 Hz and does not exist in seismic range, thus justifying the use of the static analysis. The stresses resulted from various loadings and their combinations are within the allowable limits specified in the above mentioned ASME code. The results of the seismic evaluation fully satisfied the structural acceptance criteria of the ASME code. Accordingly the structural integrity on the globe valve was proved.

Research on Dynamic Behavior of Double-Layer Barrelvault Arch Systems Subjected to Earthquake Loadings (지진하중에 대한 복층 배럴볼트 시스템의 동적거동에 대한 연구)

  • Shin, Ji-Wook;Lee, Ki-Hak;Jung, Chan-Woo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.87-94
    • /
    • 2009
  • This paper presents dynamic behavior of double-layer barrelvault systems subjected to earthquake loadings. In order to investigate different seismic behaviors according to Time History Analysis (THA), six open angles were employed and different fundamental frequencies corresponding to each open angle were considered. A total of 24 double-layer structures were developed by using Midas Gen., which is a computer analysis program and then THA with three different earthquakes with 5% damping ratio was performed. This study investigated the characteristics of the dynamic response for X-, Y- and Z- directions, both subjected to the horizontal earthquake (H) and applied to the vertical earthquake (V) with respect to the each variable, which assumed to be important aspects for spatial structure. In order to examine the dynamic characteristics, the ratio of acceleration in specific nodes of barrelvaults was evaluated at the time with maximum response. The main purpose of this study is to obtain equations of the equivalent earthquake loading with respect to the barrelvault systems.

  • PDF

Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System (기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석)

  • Oh, Yeong Hui;Kim, Yong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • The seismic responses of a building are affected by the base soil conditions. In this study, linear time-history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of 3-, 5-, and 7-story steel buildings, considering the rigid and soft soil conditions. Foundation soil stiffness, based on the equivalent static stiffness formula, is used for the damper, one of the Link elements in SAP 2000. The base shear forces of the steel buildings, estimated through time-history analysis using the general-purpose structural-analysis program of SAP 2000, were compared with those calculated using the domestic seismic design code, the UBC-97 design response spectrum. and pushover static nonlinear analysis. The steel buildings designed for gravity and wind loads showed elastic responses with a moderate earthquake of 0.11 g, while the elastic soft-soil layer increased the displacement and the base shear force of the buildings due to soil-structure interaction and soil amplification. Therefore, considering the characteristics of the soft-soil layer, it is more reasonable to perform an elastic seismic analysis of a building's structure during weak or moderate earthquakes.

A Study on the Appropriate Response Modification Factor(R) for the Complex Building Based on the Number of Stories of Lower Frame-Upper Wall (하부골조의 층수에 따른 주상복합건물의 정정 반응수정계수에 관한 연구)

  • 최문성;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.13-24
    • /
    • 2000
  • 최근 국내에서 많이 건설되어지고 있는 주상복합 건축물은 하부의 골조형식과 상부의 벽식 구조가 결합된 구조형식을 가지고 있다 따라서 지진 발생시 동일한 형식을 가진 건축물과는 상이하고 복잡한 반응을 보이게 된다 이러한 건축물의 등가정적 해석시 국내 규준에서는 기타구조물로 분류하여 3.5 의 반응수정계수를 적용하고 있다 그러나 이 계수는 검증되어지지 않는 상태로 사용되어지고 있으므로 상당한 위험성을 내포하고 있다 본 연구에서는 단순화한 주상복합 건물의 해석 및 실제의 건물에 대한 3차원 비선형 해석을 통하여 반응수정계수를 유도하였다 유도된 반응수정계수는 ATC 기준과 우리나라 기준의 차이를 고려한 보정을 수행하였다.

  • PDF