• Title/Summary/Keyword: 지진응답 비선형

Search Result 253, Processing Time 0.016 seconds

Seismic Performance Evaluation of Complex-Shaped Tall Buildings by Lateral Resisting Systems (횡력저항시스템에 따른 비정형 초고층건물 내진성능평가)

  • Youn, Wu-Seok;Lee, Dong-Hun;Cho, Chang-Hee;Kim, Eun-Seong;Lee, Dong-Chul;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.513-523
    • /
    • 2012
  • The objective of this research is to examine how the lateral resisting system of selected prototypes are affected by seismic zone effect and shape irregularity on its seismic performance. The lateral resisting systems are divided into the three types, diagrid, braced tube, and outrigger system. The prototype models were assumed to be located in LA, a high-seismicity region, and in Boston, a low-seismicity region. The shape irregularity was classified with rotated angle of plane, $0^{\circ}$, $1^{\circ}$, $2^{\circ}$. This study performed two parts of analyses, Linear Response and Non-Linear Response History(NLRH) analysis. The Linear Response analysis was used to check the displacement at the top and natural period of models. NLRH analysis was conducted to invest base shear and story drift ratio of buildings. As results, the displacement of roof and natural period of three structural systems increase as the building stiffness reduces due to the changes in rotation angle of the plane. Also, the base shear is diminished by the same reason. The result of NLRH, the story drift ratio, that was subject to Maximum Considered Earthquake(MCE) satisfied 0.045, a recommended limit according to Tall Building Initiative(TBI).

Performance Evaluation of Vibration Control According to Installation Location of a Sky-bridge (스카이브릿지 설치위치에 따른 고층건물의 진동제어 성능평가)

  • Kim, Hyun-Su;Park, Yong-Koo;Ko, Hyun;Lee, Ui-Hyun;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.65-74
    • /
    • 2010
  • In this study, the vibration control effect according to the installation location of the sky-bridge and the difference of natural periods of the connected buildings has been investigated. To this end, 40-story and 50-story building structures connected by a sky-bridge were used as example structures and the equivalent modeling method was used. Boundary nonlinear time history analyses were performed using El Centro and Taft earthquakes to investigate the dynamic behavior of the example structures and vibration control effect of the sky-bridge. Based on numerical results, it has been shown that displacement responses can be effectively controlled as the installation floor of the sky-bridge increases and acceleration responses can be effectively reduced when the sky-bridge is installed on the mid-stories of the example building.

  • PDF

Fuzzy Control of Smart Base Isolation System using Genetic Algorithm (유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.37-46
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the MR damper because the FLC has an inherent robustness and ability to handle non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. This method is efficient in improving local portions of chromosomes. Neuro fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA optimized FLC outperforms not only a passive control strategy but also a human designed FLC and a conventional semi active control algorithm.