• Title/Summary/Keyword: 지진연구센터

Search Result 106, Processing Time 0.027 seconds

An Analysis of Intensity Attenuation Characteristics by Physics-based Strong Ground-Motion Simulation (물리적 지진모델링 기반 강지진동 모사를 통한 진도 감쇠 특성 분석)

  • Kim, Su-Kyong;Song, Seok Goo;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.56-67
    • /
    • 2019
  • In this study, we analyzed the intensity attenuation for M 6.0, 6.5, and 7.0 earthquakes using the broadband strong ground motion simulation platform based on the physical seismic modeling developed by the US Southern California Earthquake Center (SCEC). The location of the earthquake was assumed to be near the epicenter of the 2016 M 5.8 Gyeongju earthquake, but two of the representative US regional models provided by the SCEC strong ground motion simulation platform were used for the propagation model. One is the Central and Eastern United States (CEUS) model representing the intraplate region, and the other is the LA Basin model representing the interplate region. Five modeling methodologies are presented in the version 16.5 of the simulation platform, and Song and Exsim models were used in this study. In the analysis, we found that different intensity attenuation patterns can be observed with the same magnitude of earthquakes, especially depending on the region (CEUS vs LA Basin). Given the same magnitude and distance, the instrumental intensity in the CEUS region (intraplate) could be larger by a unit of 2 than that in the LA Basin region (interplate). Given the difference of intensity attenuation patterns observed in the study, it is important to know the regional intensity attenuation characteristics to understand the accurate level of seismic hazard imposed in the Korean Peninsula. This study also shows the level of the uncertainty of intensity attenuation if region specific attenuation characteristics are not considered.

Evaluation of tsunami inundation using artificial intelligence (인공지능 기술을 활용한 지진해일 범람구역 산정)

  • Kim, Chang-Hee;Song, Min-Jong;Kim, Byung-Ho;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.216-216
    • /
    • 2021
  • 해저지진, 해저붕괴 및 해저화산분출 등에 발생되는 지진해일은 파장이 수십에서 수백 km에 이르는 장파로서 에너지 손실없이 먼 거리를 전파할 수 있으며, 수심이 상대적으로 얕은 해안가에 도달하면 범람에 의해 인명 및 재산피해를 야기시킬 수 있다. 예를 들어, 2004년 12월 26일에 발생한 수마트라 지진해일은 약 30만명의 인명피해와 약 10조원의 재산피해를 가져왔으며, 2011년 3월 11일에 발생한 동일본 지진해일은 약 2만명의 인명피해와 약 330조의 재산피해를 유발시켰다. 더욱이, 지진해일에 의해 폭발한 후쿠시마 원자력발전소에서의 방사능 유출은 10년이 지난 현재도 생태계 교란, 방사능 피폭 등의 피해를 일으키고 있다. 우리나라도 1983년 5월 26일 발생한 동해 중부지진해일에 의해 삼척시 임원항 및 인근에서 인명피해(1명 사망, 2명 실종)와 약 2억원의 재산피해가 발생하였다. 최근, 4차 산업혁명으로서 빅데이터를 기반으로 한 다양한 인공지능기술이 개발되고 있으며, 많은 분야에서 이 기술을 적용하고자 노력하고 있다. 특히, 과학 및 공학분야에서도 이를 융합하는 연구 및 활용하는 사례가 증가하고 있다. 본 연구에서는 1983년 발생한 중부지진해일에 의해 인명 및 재산피해가 발생한 임원항을 대상으로 지진해일 수치모형실험을 수행하며, 수치모형실험 결과를 토대로 인공지능 모델 중 합성신경망 (Convolution Neural Network)을 활용하여 인공지능을 통한 지진해일 범람구역을 산정 및 평가하고자 한다.

  • PDF

Identification of Failure Cause for Elastomeric Bearing in Bridge by Earthquakes (지진에 의한 교량의 탄성받침장치 손상 원인 규명)

  • Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, In-Tae;Kim, Jung Han;Jeong, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The seismic isolation system have been applied in order to protect the collapse of bridge by seismic load and the vertical load transmitted from the superstructure. However, the failure and damages of non-shrinkage mortar, isolator and wedge in total 12 bridge were reported by Pohang Earthquake. In this study, the damage mechanism and behavior characteristics of elastomeric bearing by an earthquake were evaluated to consider the seismic isolation system including non-shrinkage mortar and the seat concrete of pier. To discuss the effect of installed wedge and damage mode of elastomeric bearing, the compressive-shear tests were carried out. Also, the mechanical behaviors and damage mechanism for each component of elastomeric bearing were evaluated by using finite element analysis. From the test results, the cracks were created at boundary between non-shrinkage mortar and seismic isolator and the shear loads were rapidly increased after bump into wedge. The cause for damage mechanism of seismic isolation system was investigated by comparing stress distribution of anchor socket and non-shrinkage mortar depending on wedge during earthquake.

Application into Assessment of Liquefaction Hazard and Geotechnical Vulnerability During Earthquake with High-Precision Spatial-Ground Model for a City Development Area (도시개발 영역 고정밀 공간지반모델의 지진 시 액상화 재해 및 지반 취약성 평가 활용)

  • Kim, Han-Saem;Sun, Chang-Guk;Ha, Ik-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.221-230
    • /
    • 2023
  • This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m × 5 m × 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.

The Effects of Seismic Failure Correlations on the Probabilistic Seismic Safety Assessments of Nuclear Power Plants (지진 손상 상관성이 플랜트의 확률론적 지진 안전성 평가에 미치는 영향)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil;Jeon, Bub-Gyu;Park, Dong-Uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • Nuclear power plant's safety against seismic events is evaluated as risk values by probabilistic seismic safety assessment. The risk values vary by the seismic failure correlation between the structures, systems, and components (SSCs). However, most probabilistic seismic safety assessments idealized the seismic failure correlation between the SSCs as entirely dependent or independent. Such a consideration results in an inaccurate assessment result not reflecting real physical phenomenon. A nuclear power plant's seismic risk should be calculated with the appropriate seismic failure correlation coefficient between the SSCs for a reasonable outcome. An accident scenario that has an enormous impact on a nuclear power plant's seismic risk was selected. Moreover, the probabilistic seismic response analyses of a nuclear power plant were performed to derive appropriate seismic failure correlations between SSCs. Based on the analysis results, the seismic failure correlation coefficient between SSCs was derived, and the seismic fragility curve and core damage frequency of the loss of essential power event were calculated. Results were compared with the seismic fragility and core damage frequency of assuming the seismic failure correlations between SSCs were independent and entirely dependent.

Generation of Artificial Time History Earthquake Record Family using the Least Squares Fitting Method (최소오차 최적합화 방법에 의한 인공 시간이력 지진기록군의 생성)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.31-38
    • /
    • 2008
  • Recently the necessity of time history analyses is increasing for the seismic analyses of a structure, and the seismic design provisions of IBC2003, ASCE and KBC2005 require the use of a minimum of seven earthquake records for the time history analyses. Earthquake records for the time history analyses could be selected from the database of the field-measured earthquake records having similar site conditions with the designed site, or from simulated sites satisfying the design spectrum. However, in this study seven earthquake records were generated using 50 earthquake records, classified as records measured at the rock, in the database of the Pacific Earthquake Research Center (PEER). Seven earthquake records were first selected by the least squares fitting method comparing the scaling factored response spectra with the specified design spectrum, and a family of seven artificial time history earthquake records was ultimately generated by multiplying scaling factors, which were calculated by the least squares fitting method and the SRSS averaging method, to the corresponding selected earthquake records.

Repair Scheme of FRP Column Jacketing System for Seismically-vulnerable RC Buildings under Successive Earthquakes (연속지진에 대한 지진 취약 철근콘크리트 건축물의 FRP 재킷 보수 전략 연구)

  • Kim, Subin;Kim, Haewon;Park, Jaeeun;Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.79-90
    • /
    • 2023
  • Existing reinforced concrete (RC) frame buildings have seismic vulnerabilities because of seismically deficient details. In particular, since cumulative damage caused by successive earthquakes causes serious damage, repair/retrofit rehabilitation studies for successive earthquakes are needed. This study investigates the repair effect of fiber-reinforced polymer jacketing system for the seismically-vulnerable building structures under successive earthquakes. The repair modeling method developed and validated from the previous study was implemented to the building models. Additionally, the main parameters of the FRP jacketing system were selected as the number of FRP layers associated with the confinement effects and the installation location. To define the repair effects of the FRP jacketing system with the main parameters, this study conducted nonlinear time-history analyses for the building structural models with the various repairing scenarios. Based on this investigation, the repair effects of the damaged building structures were significantly affected by the damage levels induced from the mainshocks regardless of the retrofit scenarios.

A Study for Monitoring Soil Liquefaction Occurred by Earthquakes Using Soil Moisture Indices Derived from the Multi-temporal Landsat Satellite Imagery Acquired in Pohang, South Korea (다중시기 Landsat 위성영상으로부터 산출한 토양 수분 지수를 활용하여 지진 발생으로 인한 토양 액상화 모니터링에 관한 연구: 포항시를 사례로)

  • PARK, Insun;KIM, Kyoung-Seop;HAN, Byeong Cheol;CHOUNG, Yun-Jae;GU, Bon Yup;HAN, Jin Tae;KIM, Jongkwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.126-137
    • /
    • 2021
  • Recently, the number of damages on social infrastructure has increased due to natural disasters and the frequency of earthquake events that are higher than magnitude 3 has increased in South Korea. Liquefaction was found near the epicenter of a 5.4 magnitude earthquake that occurred in Pohang, South Korea, in 2017. To explore increases in soil moisture index due to soil liquefaction, changes in the remote exploration index by the land cover before and post-earthquake occurrence were analyzed using liquefaction feasibility index and multi-cyclical Landsat-8 satellite images. We found that the soil moisture index(SMI) in the liquefaction region immediately after the earthquake event increased significantly using the Normal Vegetation Index(NDVI) and Surface Temperature(LST).