DOI QR코드

DOI QR Code

A Study for Monitoring Soil Liquefaction Occurred by Earthquakes Using Soil Moisture Indices Derived from the Multi-temporal Landsat Satellite Imagery Acquired in Pohang, South Korea

다중시기 Landsat 위성영상으로부터 산출한 토양 수분 지수를 활용하여 지진 발생으로 인한 토양 액상화 모니터링에 관한 연구: 포항시를 사례로

  • 박인선 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 김경섭 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 한병철 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 정윤재 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 구본엽 ((주)지오씨엔아이 공간정보기술연구소) ;
  • 한진태 (한국건설기술연구원 인프라안전연구본부 지진안전연구센터) ;
  • 김종관 (한국건설기술연구원 인프라안전연구본부 지진안전연구센터)
  • Received : 2021.03.09
  • Accepted : 2021.03.18
  • Published : 2021.03.31

Abstract

Recently, the number of damages on social infrastructure has increased due to natural disasters and the frequency of earthquake events that are higher than magnitude 3 has increased in South Korea. Liquefaction was found near the epicenter of a 5.4 magnitude earthquake that occurred in Pohang, South Korea, in 2017. To explore increases in soil moisture index due to soil liquefaction, changes in the remote exploration index by the land cover before and post-earthquake occurrence were analyzed using liquefaction feasibility index and multi-cyclical Landsat-8 satellite images. We found that the soil moisture index(SMI) in the liquefaction region immediately after the earthquake event increased significantly using the Normal Vegetation Index(NDVI) and Surface Temperature(LST).

최근 자연재해로 인한 많은 피해가 발생하고 있으며, 특히 국내 지진 발생 추이를 보면 규모 3이상의 강도 높은 지진이 발생하는 빈도가 증가하고 있다. 2017년 발생한 규모 5.4의 포항 지진에서는 이례적으로 진앙지 인근에서 액상화 현상이 발견되었다. 토양 액상화에 따른 토양 수분지수의 증가를 간접적으로 파악하기 위해서 액상화가능성지수 자료와 다중시기 Landsat-8 위성영상을 활용하여 지진 전후의 토지피복별 원격탐사지수 변화를 분석하였다. 해당 기간의 위성영상을 취득해 정규식생지수(NDVI)와 지표면온도(LST)를 계산하고 액상화 가능 지역에 대해 토양수분지수(SMI)를 산출하여 각 영상을 구성하고 있는 픽셀의 평균값을 분석한 결과 지진 직후 토양 액상화 현상에 따른 토양 수분지수의 증가를 확인할 수 있었다.

Keywords

References

  1. Bannari, A., H. Rhinane and H. Bahi. 2018. Synergy between SMOS-MIRAS and Landsat-OLI/TIRS Data for Soil Moisture Mapping before, during, and after Flash-Flood Storm in Southwestern Morocco, Chapter 2:5-28.
  2. Choung, Y.J., K.K. Yu and Y.I. Lee. 2020. A Study on Monitoring the Land Surface Temperature Changes Caused by Constructions of Rainwater Villages Using the Multi-temporal Landsat-8 Satellite Images. Journal of the Korean Association of Geographic Information Studies 23(1): 30-40.
  3. Choung, Y.J., Y.I. Choung and S.Y. Choi. 2018. Assessment of the Relationship between Air Temperature and TOA Brightness Temperature in Different Seasons Using Landsat-8 TIRS. Journal of the Korean Association of Geographic Information Studies 21(2):68-79.. https://doi.org/10.11108/KAGIS.2018.21.2.068
  4. Giglio, L., J. Descloitres, C.O. Justice and Y.J. Kaufman. 2013. An enhanced contextual fire detection algorithm for MODIS, Rem. Sens, Environm. 87(2-3): 273-282.
  5. Gillespie, T.W., J. Chu, E. Frankenberg and D. Thomas. 2007. Assesment and Prediction of Natural Hazards from Satellite Imagery. Prog Phys Geogr. Oc.t; 31(5):459-470. https://doi.org/10.1177/0309133307083296
  6. Guha. S., H. Govi, A. Dey and N. Gill. 2018. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy, EUROPEAN JOURNAL OF REMOTE SENSING. 51 (1):667-678. https://doi.org/10.1080/22797254.2018.1474494
  7. Ha, I.S. and M.S. Jung. 2018. A Case Study on Liquefaction occurred during the Pohang Earthquak. Earthquake Engineering Society of Korea 15:2.
  8. Hazen, A. 1920. Hydraulic Fill Dams. Transactions of the American Society of Civil Engineers. 83:1717-1745.
  9. Hunt, E.D., K.G. Hubbard, D.A. Wilhite, T.J. Arkebauer and A.L. Dutcher. 2009. The development and evaluation of a soil moisture index, Int. J. Climatol. 29:747-759. https://doi.org/10.1002/joc.1749
  10. Iwasaki, T., F. Tatsuoka, K. Tokida and S. Yasuda. 1978. A Practical Method for Assessing Soil Liquefaction Potential Based on Case Studies at Various site in Japan. 5th Japan Earthquake Engineering Symposium. Vol(2):641-648.
  11. Iwasaki, T., K. Tokida, F. Tatsuoka, S. Watanabe, S. Yasuda and H. Sato. 1982. Microzonation for soil liquefaction potential using simplified methods. Proceedings 3rd International Conference on Microzonation, Seattle, USA. 1319-1330.
  12. Jung, M.S., H.S. Kang, S.Y. Park and G.H. Na. 2018. Pohang liquefaction risk assessment, Disaster & Safety. 20(1):14-19.
  13. Kaufman, Y., C.O. Justice, L.P. Flynn, J.D Kendall, E.M. Prins, L. Giglio, D.E. Ward, W.P. Menzel and A.W. Setzer. 1998. Potential grobal fire monitoring from EOS-MODIS, J. Geophys. Res. 103(D24): 32,215-32, 238. https://doi.org/10.1029/98JD01644
  14. Kim, J.K., T.Y. Kwak, J.T. Han, B.Y. Hwang and K.S. Kim. 2020. Evaluation of Dynamic Ground Properties of Pohang Area Based on In-situ and Laboratory Test. JOURNAL OF THE KOREAN GEOTECHNICAL SOCIETY. 36(9):5-20. https://doi.org/10.7843/KGS.2020.36.9.5
  15. Kim, K.S., G.S. MOON and Y.J. CHOUNG. 2020. Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data. Journal of the Korean Association of Geographic Information Studies 23(2): 70-82. https://doi.org/10.11108/KAGIS.2020.23.2.070
  16. Korea Meteorological Administration(KMA). 2017 Earthquake Annual Report. p.214.
  17. Korea Meteorological Administration(KMA), Open MET Data Portal, Weather Data Service. https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36. (Accessed January 20, 2021).
  18. Lee, H., J.K. Kim, K. Ko,Y.S. Ghim, J. Kim and S.R. Lee. 2018. Characteristics of sand volcanoes caused by 2017 Pohang Earthquake-induced liquefaction and their paleoseismological approach. Journal of the Geological Society of Korea 54(3):221-235. https://doi.org/10.14770/jgsk.2018.54.3.221
  19. National Institute of Meteorological Sciences (NIMS). 2016. Generation of Land Surface Temperature and Analysis of theEffects in Urban Green Areas Using Landsat-8 Satellite Data. Technical Notes, NIMS, Seogui-po, Korea. p.53.
  20. Saha. A., M. Patil, V.C. Goyal and D.S. Rathore. 2019. Assessment and Impact of Soil Moisture Index in Agricultural Drought Estimation Using Remote Sensing and GIS Techniques, MDPI. 7(1):2.
  21. Salvia, S., S. Stramondoa, G.J. Funningb, A. Ferrettic, F. Sartid and A. Mouratidisd., 2012. The Sentinel-1 mission 0for the improvement of the scientific understanding and the operational monitoring of the seismic cycle, Remote Sensing of Environment. 120(15):164-174. https://doi.org/10.1016/j.rse.2011.09.029
  22. SEO M.W., C.G. SUN and M.H. OH. 2009. LPI-based Assessment of Liquefaction Potential on the West Coastal Region of Korea, Journal of the Earthquake Engineering Society of Korea. 13(4):1-13. https://doi.org/10.5000/EESK.2009.13.4.001
  23. Seed, H.B. and L.M. Idriss. 1971. Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations Division, ASCE. 97(SM9):1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
  24. United States Geological Survey(USGS). 2015. Landsat 8(L8) Data Users Handbook. https://www.usgs.gov/land-resources/nli/landsat/landsat-8-data-users-handbook. (Accessed January 15, 2021).
  25. Zeri, Mi., R.C.S. Alvala, R. Carneiro, G. Cunha-Zeri, J.M. Costa, L.R. Spatafora, D. Urbano, M. Vall-Llossera and J. Marengo. 2018. Tools for Communicating Agricultural Drought over the Brazilian Semiarid Using the Soil Moisture Index, Water. 10(10):1421. https://doi.org/10.3390/w10101421