• 제목/요약/키워드: 지지기반벡터

Search Result 62, Processing Time 0.02 seconds

Analysis and Application of Power Consumption Patterns for Changing the Power Consumption Behaviors (전력소비행위 변화를 위한 전력소비패턴 분석 및 적용)

  • Jang, MinSeok;Nam, KwangWoo;Lee, YonSik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.603-610
    • /
    • 2021
  • In this paper, we extract the user's power consumption patterns, and model the optimal consumption patterns by applying the user's environment and emotion. Based on the comparative analysis of these two patterns, we present an efficient power consumption method through changes in the user's power consumption behavior. To extract significant consumption patterns, vector standardization and binary data transformation methods are used, and learning about the ensemble's ensemble with k-means clustering is applied, and applying the support factor according to the value of k. The optimal power consumption pattern model is generated by applying forced and emotion-based control based on the learning results for ensemble aggregates with relatively low average consumption. Through experiments, we validate that it can be applied to a variety of windows through the number or size adjustment of clusters to enable forced and emotion-based control according to the user's intentions by identifying the correlation between the number of clusters and the consistency ratios.

Decision Making Support System for VTSO using Extracted Ships' Tracks (항적모델 추출을 통한 해상교통관제사 의사결정 지원 방안)

  • Kim, Joo-Sung;Jeong, Jung Sik;Jeong, Jae-Yong;Kim, Yun Ha;Choi, Ikhwan;Kim, Jinhan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.310-311
    • /
    • 2015
  • Ships' tracking data are being monitored and collected by vessel traffic service center in real time. In this paper, we intend to contribute to vessel traffic service operators' decision making through extracting ships' tracking patterns and models based on these data. Support Vector Machine algorithm was used for vessel track modeling to handle and process the data sets and k-fold cross validation was used to select the proper parameters. Proposed data processing methods could support vessel traffic service operators' decision making on case of anomaly detection, calculation ships' dead reckoning positions and etc.

  • PDF

Cluster Analysis of SNPs with Entropy Distance and Prediction of Asthma Type Using SVM (엔트로피 거리와 SVM를 이용한 SNP 군집분석과 천식 유형 예측)

  • Lee, Jung-Seob;Shin, Ki-Seob;Wee, Kyu-Bum
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Single nucleotide polymorphisms (SNPs) are a very important tool for the study of human genome structure. Cluster analysis of the large amount of gene expression data is useful for identifying biologically relevant groups of genes and for generating networks of gene-gene interactions. In this paper we compared the clusters of SNPs within asthma group and normal control group obtained by using hierarchical cluster analysis method with entropy distance. It appears that the 5-cluster collections of the two groups are significantly different. We searched the best set of SNPs that are useful for diagnosing the two types of asthma using representative SNPs of the clusters of the asthma group. Here support vector machines are used to evaluate the prediction accuracy of the selected combinations. The best combination model turns out to be the five-locus SNPs including one on the gene ALOX12 and their accuracy in predicting aspirin tolerant asthma disease risk among asthmatic patients is 66.41%.

A Comparative Study on Optimal Feature Identification and Combination for Korean Dialogue Act Classification (한국어 화행 분류를 위한 최적의 자질 인식 및 조합의 비교 연구)

  • Kim, Min-Jeong;Park, Jae-Hyun;Kim, Sang-Bum;Rim, Hae-Chang;Lee, Do-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.681-691
    • /
    • 2008
  • In this paper, we have evaluated and compared each feature and feature combinations necessary for statistical Korean dialogue act classification. We have implemented a Korean dialogue act classification system by using the Support Vector Machine method. The experimental results show that the POS bigram does not work well and the morpheme-POS pair and other features can be complementary to each other. In addition, a small number of features, which are selected by a feature selection technique such as chi-square, are enough to show steady performance of dialogue act classification. We also found that the last eojeol plays an important role in classifying an entire sentence, and that Korean characteristics such as free order and frequent subject ellipsis can affect the performance of dialogue act classification.

Signal Sequence Prediction Based on Hydrophobicity and Substitution Matrix (소수성과 치환행렬에 기반한 신호서열 예측)

  • Chi, Sang-Mun
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.595-602
    • /
    • 2007
  • This paper proposes a method that discriminates signal peptide and predicts the cleavage site of the secretory proteins cleaved by the signal peptidase I. The preprocessing stage uses hydrophobicity scales of amino acids in order to predict the presence of signal sequence and the cleavage site. The preprocessing enhances the performance of the prediction method by eliminating the non-secretory proteins in the early stage of prediction. for the effective use of support vector machine for the signal sequence prediction, the biologically relevant distance between the amino acid sequences is defined by using the hydrophobicity and substitution matrix; the hydrophobicity can be used to Predict the location of amino acid in a cell and the substitution matrix represents the evolutionary relationships of amino acids. The proposed method showed 98.9% discrimination rates from signal sequences and 88% correct rate of the cleavage site prediction on Swiss-Prot release 50 protein database using the 5-fold-cross-validation. In the comparison tests, the proposed method has performed significantly better than other prediction methods.

Performance Comparison of Machine Learning Algorithms for TAB Digit Recognition (타브 숫자 인식을 위한 기계 학습 알고리즘의 성능 비교)

  • Heo, Jaehyeok;Lee, Hyunjung;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • In this paper, the classification performance of learning algorithms is compared for TAB digit recognition. The TAB digits that are segmented from TAB musical notes contain TAB lines and musical symbols. The labeling method and non-linear filter are designed and applied to extract fret digits only. The shift operation of the 4 directions is applied to generate more data. The selected models are Bayesian classifier, support vector machine, prototype based learning, multi-layer perceptron, and convolutional neural network. The result shows that the mean accuracy of the Bayesian classifier is about 85.0% while that of the others reaches more than 99.0%. In addition, the convolutional neural network outperforms the others in terms of generalization and the step of the data preprocessing.

Sub-structuring Technique of High-speed Train-bridge Interaction Analysis for Foundation Design (기초 설계를 위한 고속철도 교량-열차 상호작용 해석의 부구조화 기법)

  • Lee, Kang-Il;Song, Myung-Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2021
  • In this paper, the sub-structuring technique-applied train-bridge interaction analysis model, which is formulated based on the simplified three-dimensional train-bridge interaction analysis model for high-speed bridge-train interaction analysis, is presented. In the sub-structuring technique, the super-structure and the supporting structure of railway bridges can be modeled as sub-structures, and train-bridge interaction analysis can be efficiently performed. As a train analysis model, two-dimensional train model is used, and the Lagrange equation of motion is applied to derive the equation of motion of two-dimensional train. In the sub-structuring technique, the number of degrees of freedom can be reduced by using the condensation method, thus reducing the time and cost for calculating the eigenvalues and eigenvectors, and the time and cost for the subsequent calculation. In this paper, Guyan reduction method is used as sub-structuring technique. By combining simplified three-dimensional bridge-train interaction analysis and Guyan reduction method, the efficient and accurate bridge-train interaction analysis can be performed.

Competition Relation Extraction based on Combining Machine Learning and Filtering (기계학습 및 필터링 방법을 결합한 경쟁관계 인식)

  • Lee, ChungHee;Seo, YoungHoon;Kim, HyunKi
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.367-378
    • /
    • 2015
  • This study was directed at the design of a hybrid algorithm for competition relation extraction. Previous works on relation extraction have relied on various lexical and deep parsing indicators and mostly utilize only the machine learning method. We present a new algorithm integrating machine learning with various filtering methods. Some simple but useful features for competition relation extraction are also introduced, and an optimum feature set is proposed. The goal of this paper was to increase the precision of competition relation extraction by combining supervised learning with various filtering methods. Filtering methods were employed for classifying compete relation occurrence, using distance restriction for the filtering of feature pairs, and classifying whether or not the candidate entity pair is spam. For evaluation, a test set consisting of 2,565 sentences was examined. The proposed method was compared with the rule-based method and general relation extraction method. As a result, the rule-based method achieved positive precision of 0.812 and accuracy of 0.568, while the general relation extraction method achieved 0.612 and 0.563, respectively. The proposed system obtained positive precision of 0.922 and accuracy of 0.713. These results demonstrate that the developed method is effective for competition relation extraction.

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.

A Korean Document Sentiment Classification System based on Semantic Properties of Sentiment Words (감정 단어의 의미적 특성을 반영한 한국어 문서 감정분류 시스템)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper proposes how to improve performance of the Korean document sentiment-classification system using semantic properties of the sentiment words. A sentiment word means a word with sentiment, and sentiment features are defined by a set of the sentiment words which are important lexical resource for the sentiment classification. Sentiment feature represents different sentiment intensity in general field and in specific domain. In general field, we can estimate the sentiment intensity using a snippet from a search engine, while in specific domain, training data can be used for this estimation. When the sentiment intensity of the sentiment features are estimated, it is called semantic orientation and is used to estimate the sentiment intensity of the sentences in the text documents. After estimating sentiment intensity of the sentences, we apply that to the weights of sentiment features. In this paper, we evaluate our system in three different cases such as general, domain-specific, and general/domain-specific semantic orientation using support vector machine. Our experimental results show the improved performance in all cases, and, especially in general/domain-specific semantic orientation, our proposed method performs 3.1% better than a baseline system indexed by only content words.