• Title/Summary/Keyword: 지지기반벡터

Search Result 62, Processing Time 0.029 seconds

SVDD based Scene Understanding using Color Space Information (색 공간 정보를 이용한 지지벡터 영역 묘사 기반의 장면 이해)

  • Kim, Soo-Wan;Chang, Hyung-Jin;Kang, Woo-Sung;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.264-265
    • /
    • 2008
  • 기존 영상감시 시스템의 물체 탐지 알고리즘은 주로 배경 모델링 기법을 기반으로 하고 있다. 이 기법은 차영상 기법보다는 성능이 뛰어나기는 하지만 여전히 정지 카메라에서만 활용이 가능하고, 주변 환경에 따라 알고리즘 상의 많은 임계값을 현재 상황에 맞춰 일일이 조절해 주어야 한다는 한계점이 있다. 따라서 이 논문에서는 배경모델링 기법을 사용하지 않고 입력되는 영상의 Color 정보를 이용하여 영상 내에 있는 여러 대상을 직접 판단하여 관심 있는 물체를 탐지하는 방법을 제안하고자 한다. 제안된 알고리즘은 먼저 현재의 영상을 하나의 물체로 추정되는 영역이 하나의 영역으로 구분되어지게 간단하게 분할해낸다 그리고 나누어진 영역마다 대표 Color 값을 계산하여 미리 학습된 데이터를 기준으로 Support Vector Domain Description (SVDD) 알고리즘을 사용하여 구별해내고 그 결과를 바탕으로 영역이 무엇인지를 판별해낸다. 이 방법은 정지되어 있는 카메라뿐만 아니라 움직이는 카메라 상에서도 사용되어질 수 있으며 알고리즘 상에서 사용되는 임계값의 종류가 적기 때문에 많은 상황에서 일반적으로 쓰일 수 있다.

  • PDF

A Differential Evolution based Support Vector Clustering (차분진화 기반의 Support Vector Clustering)

  • Jun, Sung-Hae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.679-683
    • /
    • 2007
  • Statistical learning theory by Vapnik consists of support vector machine(SVM), support vector regression(SVR), and support vector clustering(SVC) for classification, regression, and clustering respectively. In this algorithms, SVC is good clustering algorithm using support vectors based on Gaussian kernel function. But, similar to SVM and SVR, SVC needs to determine kernel parameters and regularization constant optimally. In general, the parameters have been determined by the arts of researchers and grid search which is demanded computing time heavily. In this paper, we propose a differential evolution based SVC(DESVC) which combines differential evolution into SVC for efficient selection of kernel parameters and regularization constant. To verify improved performance of our DESVC, we make experiments using the data sets from UCI machine learning repository and simulation.

Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data (자료기반 학습 알고리즘을 이용한 지하수위 변동 예측 모델의 국가지하수관측망 자료 적용에 대한 비교 평가 연구)

  • Yoon, Heesung;Kim, Yongcheol;Ha, Kyoochul;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.137-147
    • /
    • 2013
  • For the effective management of groundwater resources, it is necessary to predict groundwater level fluctuations in response to rainfall events. In the present study, time series models using artificial neural networks (ANNs) and support vector machines (SVMs) have been developed and applied to groundwater level data from the Gasan, Shingwang, and Cheongseong stations of the National Groundwater Monitoring Network. We designed four types of model according to input structure and compared their performances. The results show that the rainfall input model is not effective, especially for the prediction of groundwater recession behavior; however, the rainfall-groundwater input model is effective for the entire prediction stage, yielding a high model accuracy. Recursive prediction models were also effective, yielding correlation coefficients of 0.75-0.95 with observed values. The prediction errors were highest for Shingwang station, where the cross-correlation coefficient is lowest among the stations. Overall, the model performance of SVM models was slightly higher than that of ANN models for all cases. Assessment of the model parameter uncertainty of the recursive prediction models, using the ratio of errors in the validation stage to that in the calibration stage, showed that the range of the ratio is much narrower for the SVM models than for the ANN models, which implies that the SVM models are more stable and effective for the present case studies.

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

Relation Extraction based on Extended Composite Kernel using Flat Lexical Features (평면적 어휘 자질들을 활용한 확장 혼합 커널 기반 관계 추출)

  • Chai, Sung-Pil;Jeong, Chang-Hoo;Chai, Yun-Soo;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.642-652
    • /
    • 2009
  • In order to improve the performance of the existing relation extraction approaches, we propose a method for combining two pivotal concepts which play an important role in classifying semantic relationships between entities in text. Having built a composite kernel-based relation extraction system, which incorporates both entity features and syntactic structured information of relation instances, we define nine classes of lexical features and synthetically apply them to the system. Evaluation on the ACE RDC corpus shows that our approach boosts the effectiveness of the existing composite kernels in relation extraction. It also confirms that by integrating the three important features (entity features, syntactic structures and contextual lexical features), we can improve the performance of a relation extraction process.

Comparison of Acceleration-Compensating Mechanisms for Improvement of IMU-Based Orientation Determination (IMU기반 자세결정의 정확도 향상을 위한 가속도 보상 메카니즘 비교)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.783-790
    • /
    • 2016
  • One of the main factors related to the deterioration of estimation accuracy in inertial measurement unit (IMU)-based orientation determination is the object's acceleration. This is because accelerometer signals under accelerated motion conditions cannot be longer reference vectors along the vertical axis. In order to deal with this issue, some orientation estimation algorithms adopt acceleration-compensating mechanisms. Such mechanisms include the simple switching techniques, mechanisms with adaptive estimation of acceleration, and acceleration model-based mechanisms. This paper compares these three mechanisms in terms of estimation accuracy. From experimental results under accelerated dynamic conditions, the following can be concluded. (1) A compensating mechanism is essential for an estimation algorithm to maintain accuracy under accelerated conditions. (2) Although the simple switching mechanism is effective to some extent, the other two mechanisms showed much higher accuracies, particularly when test conditions were severe.

Korean Semantic Role Labeling Based on Suffix Structure Analysis and Machine Learning (접사 구조 분석과 기계 학습에 기반한 한국어 의미 역 결정)

  • Seok, Miran;Kim, Yu-Seop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.555-562
    • /
    • 2016
  • Semantic Role Labeling (SRL) is to determine the semantic relation of a predicate and its argu-ments in a sentence. But Korean semantic role labeling has faced on difficulty due to its different language structure compared to English, which makes it very hard to use appropriate approaches developed so far. That means that methods proposed so far could not show a satisfied perfor-mance, compared to English and Chinese. To complement these problems, we focus on suffix information analysis, such as josa (case suffix) and eomi (verbal ending) analysis. Korean lan-guage is one of the agglutinative languages, such as Japanese, which have well defined suffix structure in their words. The agglutinative languages could have free word order due to its de-veloped suffix structure. Also arguments with a single morpheme are then labeled with statistics. In addition, machine learning algorithms such as Support Vector Machine (SVM) and Condi-tional Random Fields (CRF) are used to model SRL problem on arguments that are not labeled at the suffix analysis phase. The proposed method is intended to reduce the range of argument instances to which machine learning approaches should be applied, resulting in uncertain and inaccurate role labeling. In experiments, we use 15,224 arguments and we are able to obtain approximately 83.24% f1-score, increased about 4.85% points compared to the state-of-the-art Korean SRL research.

A Study on Low Power Design of SVM Algorithm for IoT Environment (IoT 환경을 위한 SVM 알고리즘 저전력화 방안 연구)

  • Song, Jun-Seok;Kim, Sang-Young;Song, Byung-Hoo;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.73-74
    • /
    • 2017
  • SVM(Support Vector Machine) 알고리즘은 대표적인 기계 학습 분류 알고리즘으로 감정 분석, 제스처 인식 등 다양한 분야의 문제를 해결하기 위해 사용되고 있다. SVM 알고리즘은 분리경계면(Hyper-Plane) 또는 분리경계면 집합 중 지지벡터(Support Vector)라 불리는 특정한 점들로 이루어진 두 그룹 간의 거리 차이(Margin)를 최대로 하는 분리경계면을 이용하여 데이터를 분류하는 알고리즘이다. 높은 정확도를 제공하지만 처리 속도가 느리며 학습을 위해 대량의 데이터 및 메모리가 필요하기 때문에 자원이 제한적인 IoT 환경에서 사용이 어렵다. 본 논문에서는 자원이 제한된 IoT 노드를 기반으로 효율적으로 데이터를 학습하기 위해 K-means 알고리즘을 이용하여 SVM 알고리즘의 저전력화 방안을 연구한다.

  • PDF

Support Vector Data Description using Mean Shift Clustering (평균 이동 알고리즘 기반의 지지 벡터 영역 표현 방법)

  • Chang, Hyung-Jin;Kim, Pyo-Jae;Choi, Jung-Hwan;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.307-309
    • /
    • 2007
  • SVDD의 scale prob1em을 해결하기 위하여, 학습 데이터를 sub-groupings하여 group 단위로 SVDD를 통해 학습함으로써 학습 시간을 줄이는, K-means clustering을 이용한 SVDD 방범(KMSVDD)이 제안되었다. 하지만 KMSVDD는 K-means clustering 알고리즘의 본질상 최적의 K값을 정하기 힘들다는 문제와, 동일한 데이터를 학습할지라도 clustered group이 램덤하게 형성되기 때문에 매번 학습의 결과가 달라지는 문제점이 있었다. 또한 데이터의 분포 상태와 관계없이 무조건 타원(dlliptic) 형태의 K개의 cluster로 나누기 때문에 각각의 나눠진 cluster들은 데이터 분포에 대한 특징을 나타내기 힘들게 된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 데이터 분포에서 mode를 먼저 찾은 후 이 mode를 기준으로 clustering하는 Mean Shift clustering 방법을 이용한 SVDD를 제안하고자 한다. 제안된 알고리즘은 KMSVDD와 비교해 데이터 학습 속도에서는 큰 차이가 없으면서도 데이터의 분포 상태를 고려한 형태로 clustering 한 sub-group을 학습하므로 학습의 정확도가 일정하게 되며, 각각의 cluster는 데이터 분표의 특징을 포함하는 효과가 있다. 또한 Mean Shift Kernel의 bandwidth의 결정은 K-Means의 K와는 달리 어느 정도 여유를 갖고 결정되어도 학습 결과에는 차이가 없다. 다양한 데이터들을 이용한 모의실험을 통하여 위의 내용들을 검증하도록 한다.

  • PDF

A Semantic Orientation Prediction Method of Sentiment Features Based on the General and Domain-Dependent Characteristics (일반적, 영역 의존적 특성을 반영한 감정 자질의 의미지향성 추정 방법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.155-159
    • /
    • 2009
  • 본 논문은 한국어 문서 감정분류를 위한 중요한 어휘 자원인 감정자질(Sentiment Feature)의 의미지향성(Semantic Orientation) 추정을 위해 일반적인 특성과 영역(Domain) 의존적인 특성을 반영하여 한국어 문서 감정분류(Sentiment Classification)의 성능 향상을 얻을 수 있는 기법을 제안한다. 감정자질의 의미지 향성은 검색 엔진을 통해 추출한 각 감정 자질의 스니핏(Snippet)과 실험 말뭉치를 이용하여 추정할 수 있다. 검색 엔진을 통해 추출된 스니핏은 감정자질의 일반적인 특성을 반영하며, 실험 말뭉치는 분류하고자 하는 영역 의존적인 특성을 반영한다. 이렇게 얻어진 감정자질의 의미지향성 수치는 각 문장의 감정강도를 추정하기 위해 이용되며, 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정자질의 가중치를 책정한다. 최종적으로 학습 과정에서 긍정 문서에서는 긍정 감정자질, 부정 문서에서는 부정 감정자질을 대상으로 추가 가중치를 부여하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능향상을 보였다.

  • PDF