• Title/Summary/Keyword: 지중 열전도도

Search Result 67, Processing Time 0.02 seconds

Thermal conductivity and viscosity of graphite-added bentonite grout for backfilling ground heat exchanger (지중 열교환기용 뒤채움재로서 흑연을 첨가한 벤토나이트 그라우트재의 열전도도 및 점도 특성)

  • Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok;Choi, Hyo-Pum
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Bentonite-based grouting has been usually used for sealing a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. The bentonite-based grout, however, has relatively lower thermal conductivity than that of ground formation. Accordingly, it is common to add some additives such as silica sand into the bentonite-based grout for enhancing heat transfer. In this study, graphite is adapted to substitute silica sand as an addictive because graphite has very high thermal conductivity. The effect of graphite on the thermal conductivity of bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, the viscosity of graphite-added bentonite grout was measured to evaluate the field pumpability of the grout.

  • PDF

Evaluation of Ground Thermal Conductivity by Performing In-Situ Thermal Response test (TRT) and CFD Back-Analysis (현장 열응답 시험(TRT)과 CFD 역해석을 통한 지반의 열전도도 평가)

  • Park, Moonseo;Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.5-15
    • /
    • 2012
  • In this study, a series of CFD (Computational Fluid Dynamics) numerical analyses were performed in order to evaluate the thermal performance of six full-scale closed-loop vertical ground heat exchangers constructed in a test bed located in Wonju. The circulation HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow fluid and the variation of the surrounding ground temperature with depth were adopted in the FLUENT model. The relevant thermal properties of materials measured in laboratory were used in the numerical analyses to compare the thermal efficiency of various types of the heat exchangers installed in the test bed. The simulation results provide a verification for the in-situ thermal response test (TRT) data. The CFD numerical back-analysis with the ground thermal conductivity of 4 W/mK yielded better agreement with the in-situ thermal response tests than with the ground thermal conductivity of 3 W/mK.

Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance (지표면 열평형의 열-수리적 경계조건에 대한 수치해석)

  • Shin, Hosung;Jeoung, Jae-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.25-31
    • /
    • 2021
  • Boundary conditions for thermal-hydraulic problems of soils play an essential role in the numerical accuracy. This study presents a boundary condition considering the thermo-hydraulic interaction between the ground and the atmosphere. Ground surface energy balance consists of solar radiation, ground radiation, wind convection, latent heat from water evaporation, and heat conduction to the ground. Equations for each heat flux are presented, and numerical analyses are performed in conjunction with the FEM program for the thermal-hydraulic phenomenon of unsaturated soils. Numerical results using the weather data at the Ulsan Meteorological Observatory are similar to the measured surface temperature. Latent heat caused by water evaporation during the daytime lowers the surface temperature of the bare soil, and a thermal equilibrium is reached at nighttime when the effect of the ground condition is significantly reduced. The temperature change of the surface ground is diminished at the deeper ground due to its thermal diffusion. Numerical analysis where the surface ground temperature is the primary concern requires considering the thermo-hydraulic interaction between the ground and the atmosphere.

Estimation of Soil Cooling Load in the Root Zone of Greenhouses (온실내 근권부의 지중냉각부하 추정)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2002
  • Root zone cooling, such as soil or nutrient solution cooling, is less expensive than air cooling in the whole greenhouse and is effective in promoting root activity, improving water absorption rate, decreasing plant temperature, and reducing high temperature stress. The heat transfer of a soil cooling system in a plastic greenhouse was analyzed to estimate cooling loads. The thermal conductivity of soil, calculated by measured heat fluxes in the soil, showed the positive correlation with the soil water content. It ranged from 0.83 to 0.96 W.m$^{[-10]}$ .$^{\circ}C$$^{[-10]}$ at 19 to 36% of soil water contents. As the indoor solar radiation increased, the temperature difference between soil surface and indoor air linearly increased. At 300 to 800 W.m$^{-2}$ of indoor solar radiations, the soil surface temperature rose from 3.5 to 7.$0^{\circ}C$ in bare ground and 1.0 to 2.5$^{\circ}C$ under the canopy. Cooling loads in the root zone soil were estimated with solar radiation, soil water content, and temperature difference between air and soil. At 300 to 600 W.m$^{-2}$ of indoor solar radiations and 20 to 40% of soil water contents,46 to 59 W.m$^{-2}$ of soil cooling loads are required to maintain the temperature difference of 1$0^{\circ}C$ between indoor air and root zone soil.

Chemical and Physical Influence Factors on Performance of Bentonite Grouts for Backfilling Ground Heat Exchanger (지중 열교환기용 멘토나이트 뒤채움재의 화학적, 물리적 영향 요소에 관한 연구)

  • Lee, Chul-Ho;Wi, Ji-Hae;Park, Moon-Seo;Choi, Hang-Seok;Shon, Byong-Hu
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.19-30
    • /
    • 2010
  • Bentonite-based grout has been widely used to seal a borehole constructed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. Three types of bentonites were compared one another in terms of viscosity and thermal conductivity in this paper. The viscosity and thermal conductivity of the grouts with bentonite contents of 5%, 10%, 15%, 20% and 25% by weight were examined to take into account a variable water content of bentonite grout depending on field conditions. To evaluate the effect of salinity (i.e., concentration of NaCl : 0.1M, 0.25M, and 0.5M) on swelling potential of the bentonite-based grouts, a series of volume reduction tests were performed. In addition, if the viscosity of bentonite-water mixture is relatively low, particle segregation can occur. To examine the segregation phenomenon, the degree of segregation has been evaluated for the bentonite grouts especially in case of relatively low viscosity. From the experimental results, it is found that (1) the viscosity of the bentonite mixture increased with time and/or with increasing the mixing ratio. However, the thermal conductivity of the bentonite mixture did not increase with time but increased with increasing the mixing ratio; (2) If bentonite grout has a relatively high swelling index, the volume reduction ratio in the saline condition will be low; (3) The additive, such as a silica sand, can settle down on the bottom of the borehole if the bentonite has a very low viscosity. Consequently, the thermal conductivity of the upper portion of the ground heat exchanger will be much smaller than that of the lower portion.

Physical and Mechanical Properties of Cements for Borehole and Stability Analysis of Cement Sheath (관정 시멘팅 재료의 물리역학물성 및 시멘트층의 안정성 분석)

  • Kim, Kideok;Lee, Hikweon;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • We carried out laboratory material tests on two cements (KS-1 ordinary Portland and Class G) with changing W/S (Water/Solid) and the content of fly ash in order to evaluate their physical and mechanical properties. The specimens of KS-1 ordinary Portland cement were prepared with varying W/S (Solid=cement) in weight, while those of Class G cement were prepared with changing the content of fly ash in volume but maintaining W/S (Solid=cement+fly ash). The results of the material tests show that as the W/S in KS-1 ordinary Portland cement and the content of fly ash in Class G cement increase, the properties (density, sonic wave velocity, elastic constants, compressive and tensile strengths, thermal conductivity) decrease, but porosity and specific heat increase. In addition, an increase in confining pressure and in the content of fly ash leads to plastic failure behavior of the cements. The laboratory data were then used in a stability analysis of cement sheath for which an analytical solution for computing the stress distribution induced around a cased, cemented well was employed. The analysis was carried out with varying the injection well parameters such as thickness of casing and cement, injection pressure, dip and dip direction of injection well, and depth of injection well. The analysis results show that cement sheath is stable in the cases of relatively lower injection pressures and inclined and horizontal wells. However, in the other cases, it is damaged by mainly tensile failure.

Estimation of Potential Evapotranspiration using LAI (LAI를 고려한 잠재증발산량 추정)

  • Kim, Joo-Hun;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.1-13
    • /
    • 2005
  • In the process of a hydrology circulation, evapotranspiration is considered a very important factor to build a plan for the development of water resources and to operate water resources system. This study purposes to estimate daily potential evapotranspiration quantity in consideration of energy factors of the surface by using spatial information such as Landsat TM (ETM+) data, DEM and Landcover. Kyounan-cheon, Han River is selected as a target area, and landcover is divided by vegetation and non-vegetation covered area. Penman-Monteith equation which considers leaf-area index is used to estimate potential evapotranspiration quantity of vegetation covered area. The combination method (energy burget and aerodynamic method) is used in non-vegetation covered area. Among the input data for estimating potential evapotranspiration, NDVI, SR and Albedo is formed by Landsat, TM and ETM+ from 1986 through 2002. ground heat flux is estimated by using NDVI distribution map, LAI distribution map is drawn by using SR distribution map. The result of estimation shows that the average potential evapotranspiration in the whole basin is about 1.8-3.2mm/day per each cell. THe results of estimating potential evapotranspiration quantity by each landcover are as follows; water surface 3.6-4.9mm/day, city 1.4-3.1mm/day, bareland 1.4-3.5mm/day, grassland 1.7-3.7mm/day, forest 1.7-3.0mm/day and farmland 1.8-3.6mm/day. The potential evapotranspiration quantity is underestimated in comparison with observed evaporation data by evaporation pan, but it is considered that it has physical propriety.

  • PDF