• Title/Summary/Keyword: 지중매설 유리섬유복합관

Search Result 4, Processing Time 0.023 seconds

A Safety Evaluation on the Ring Deflection of Buried GRP Pipes (지중매설 유리섬유복합관의 관변형에 관한 안전성 평가)

  • Park, Joon-Seok;Kim, Sun-Hee;Kim, Eung-Ho;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.26-33
    • /
    • 2011
  • Recently, the use of buried glass fiber reinforced plastic (GRP) pipes is widespread and ever increasing trend in the industry. GRP pipes are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. The structural behavior of a GRP pipes buried under the ground is different from that of a rigid one made of concrete or clay, for example. A GRP pipe buried under the ground is deflected circumferentially by several percent and the stresses in the pipe are mainly compressive stresses. A GRP pipes has been introduced by a number of manufacturers for selection and used by underground pipeline designers. In all cases, the modified Spangler's equation is recommended by these manufacturers for predicting the ring deflection of these pipes under dead and live loads. In this paper, the ring deflection of buried GRP pipe is evaluated and discussed based on the result of analytical investigation.

Verification of Applicability of Buried GFRP Pipe through Numerical Analysis (수치해석을 통한 지중매설된 GFRP관의 적용성 평가)

  • Kim, Hongtaek;Kwon, Hyukjoon;Yoon, Myungjune;Yoon, Soonjong;Han, Yeonjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.73-82
    • /
    • 2010
  • The GFRP(Glass-Fiber Reinforced Plastic) pipe is designed to behave safely against the external forces and to secure stability of deformation and settlements of pipe, since it is laid under the ground. In this study, the evaluation for the pressure stability was carried out by performing the laboratory experiments to figure out the mechanical properties of Glass-Fiber Reinforced Plastic pipe, take a theoretical approach, and suggest the mechanical properties necessary for the analysis and design of GFRP. Numerical analysis is also conducted to evaluate on the field application through the comparison concerning relations between deformation and differential settlement in the GFRP and hume pipes when all and half sections are under the surcharge load.

Behavior Analysis of Buried GFRP Pipes and Flanges (지중 매설 GFRP 관로 및 플랜지의 거동 분석)

  • Han, Taek Hee;Kim, Hyo-San;Jang, Young-Doo;Park, Yoon-Ho;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Static analyses and buckling analyses were carried out for buried GFRP pipes by using finite element method. Vehicle loads, vertical and lateral soil pressures were considered as external loads, and supplying water pressure was considered as an internal load. Nine types of the factory-manufactured GFRP pipes were analyzed. Their maximum stresses and displacements were compared with the limit displacements and ultimate stress. Additionally, stress analysis on an enhanced flange, which was designed to reduce stress concentration, was performed. A cantilever analysis was carried out to know the maximum stress on the neck of the flange, which is the critical part. And a static analysis was carried for the buried flange. The test results showed that GFRP pipes were safe and stable against the external loads. And they showed that the enhanced flange decreased about 35% of the stress concentration.

  • PDF

Pipe Stiffness Prediction of GRP Flexible Pipe (GRP 연성관의 관강성 예측)

  • Lee, Young-Geun;Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • In this paper, we present the load-deflection behavior of GRP pipes. GRP buried pipes are widely used in construction in the advantage of their superior mechanical and physical characteristics such as high chemical resistance, high corrosion resistance, right weight, smooth surface of the pipe, and cost effectiveness from soil-structure interaction. To design flexible pipes to be buried underground, it should be based on the ASTM D2412(2010). When applying ASTM D 2412(2010) to the design, pipe stiffness(PS) must be predetermined by the parallel-plate test which requires tedious and laborious working process. To overcome such problems, the finite element simulations for finding the load-deflection behavior of the GRP flexible pipes is installed at UTM testing machine. In the finite element simulations, basic data, such as the modulus of elasticity of the material and cross-sectional dimension, is used. From the investigation, we found that the difference between experimental result and analytical prediction is less than 15% when the pipe deflected 3% and 5% of its vertical diameter although the pipe material is not uniform across the cross-section.