• Title/Summary/Keyword: 지연필터

Search Result 400, Processing Time 0.031 seconds

A Study on Utilization of Recycled Aggregates as Lateral Drain for Soft Ground Improvemnet (연약지반 개량을 위한 수평배수층 재료로 순환골재의 적용 방안에 대한 연구)

  • Lee, Jong-Yoon;Chun, Hae-Pyo;Jeong, Woo-Chul;Lim, Hae-Sic
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.5-15
    • /
    • 2008
  • The purpose of this study is to examine the validity of recycled aggregates (RAs) as a substitute for Sand-Mat material for soft ground improvement in the housing site development. To evaluate the possibility of RAs as a substitute for sand mat material, first of all, the criteria and regulations related with the quality of lateral drain layer were collected and checked. Secondly, both of the properties of RAs were compared with the properties of natural sand for the lateral drain layer. The material properties related to coefficient of permeability, pressure at-rest state and so on satisfied most standards. On the basis of the test results, RAs were used to the construction site as lateral drain layer. Accordingly, if the quality of RAs can be managed well, the application of these RAs as lateral drain layer to replace natural sand was highly effective. Also, based on cost analysis of two materials, RAs are proved to be very competitive.

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF

FPGA-based One-Chip Architecture and Design of Real-time Video CODEC with Embedded Blind Watermarking (블라인드 워터마킹을 내장한 실시간 비디오 코덱의 FPGA기반 단일 칩 구조 및 설계)

  • 서영호;김대경;유지상;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1113-1124
    • /
    • 2004
  • In this paper, we proposed a hardware(H/W) structure which can compress and recontruct the input image in real time operation and implemented it into a FPGA platform using VHDL(VHSIC Hardware Description Language). All the image processing element to process both compression and reconstruction in a FPGA were considered each of them was mapped into H/W with the efficient structure for FPGA. We used the DWT(discrete wavelet transform) which transforms the data from spatial domain to the frequency domain, because use considered the motion JPEG2000 as the application. The implemented H/W is separated to both the data path part and the control part. The data path part consisted of the image processing blocks and the data processing blocks. The image processing blocks consisted of the DWT Kernel fur the filtering by DWT, Quantizer/Huffman Encoder, Inverse Adder/Buffer for adding the low frequency coefficient to the high frequency one in the inverse DWT operation, and Huffman Decoder. Also there existed the interface blocks for communicating with the external application environments and the timing blocks for buffering between the internal blocks The global operations of the designed H/W are the image compression and the reconstruction, and it is operated by the unit of a field synchronized with the A/D converter. The implemented H/W used the 69%(16980) LAB(Logic Array Block) and 9%(28352) ESB(Embedded System Block) in the APEX20KC EP20K600CB652-7 FPGA chip of ALTERA, and stably operated in the 70MHz clock frequency. So we verified the real time operation of 60 fields/sec(30 frames/sec).

Design of a Bit-Level Super-Systolic Array (비트 수준 슈퍼 시스톨릭 어레이의 설계)

  • Lee Jae-Jin;Song Gi-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.45-52
    • /
    • 2005
  • A systolic array formed by interconnecting a set of identical data-processing cells in a uniform manner is a combination of an algorithm and a circuit that implements it, and is closely related conceptually to arithmetic pipeline. High-performance computation on a large array of cells has been an important feature of systolic array. To achieve even higher degree of concurrency, it is desirable to make cells of systolic array themselves systolic array as well. The structure of systolic array with its cells consisting of another systolic array is to be called super-systolic array. This paper proposes a scalable bit-level super-systolic amy which can be adopted in the VLSI design including regular interconnection and functional primitives that are typical for a systolic architecture. This architecture is focused on highly regular computational structures that avoids the need for a large number of global interconnection required in general VLSI implementation. A bit-level super-systolic FIR filter is selected as an example of bit-level super-systolic array. The derived bit-level super-systolic FIR filter has been modeled and simulated in RT level using VHDL, then synthesized using Synopsys Design Compiler based on Hynix $0.35{\mu}m$ cell library. Compared conventional word-level systolic array, the newly proposed bit-level super-systolic arrays are efficient when it comes to area and throughput.

Low-Power Discrete-Event SoC for 3DTV Active Shutter Glasses (3DTV 엑티브 셔터 안경을 위한 저전력 이산-사건 SoC)

  • Park, Dae-Jin;Kwak, Sung-Ho;Kim, Chang-Min;Kim, Tag-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.18-26
    • /
    • 2011
  • Debates concerning the competitive edge of leading 3DTV technology of the shutter glasses (SG) 3D and the film-type patterned retarder (FPR) are flaring up. Although SG technology enables Full-HD 3D vision, it requires complex systems including the sync transmitter (emitter), the sync processor chip, and the LCD lens in the active shutter glasses. In addition, the transferred sync-signal is easily affected by the external noise and a 3DTV viewer may feel flicker-effect caused by cross-talk of the left and right image. The operating current of the sync processor in the 3DTV active shutter glasses is gradually increasing to compensate the sync reconstruction error. The proposed chip is a low-power hardware sync processor based discrete-event SoC(system on a chip) designed specifically for the 3DTV active shutter glasses. This processor implements the newly designed power-saving techniques targeted for low-power operation in a noisy environment between 3DTV and the active shutter glasses. This design includes a hardware pre-processor based on a universal edge tracer and provides a perfect sync reconstruction based on a floating-point timer to advance the prior commercial 3DTV shutter glasses in terms of their power consumption. These two techniques enable an accurate sync reconstruction in the slow clock frequency of the synchronization timer and reduce the power consumption to less than about a maximum of 20% compared with other major commercial processors. This article describes the system's architecture and the details of the proposed techniques, also identifying the key concepts and functions.

Analysis of fMRI Signal Using Independent Component Analysis (Independent Component Analysis를 이용한 fMRI신호 분석)

  • 문찬홍;나동규;박현욱;유재욱;이은정;변홍식
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.188-195
    • /
    • 1999
  • The fMRI signals are composed of many various signals. It is very difficult to find the accurate parameter for the model of fMRI signal containing only neural activity, though we may estimating the signal patterns by the modeling of several signal components. Besides the nose by the physiologic motion, the motion of object and noise of MR instruments make it more difficult to analyze signals of fMRI. Therefore, it is not easy to select an accurate reference data that can accurately reflect neural activity, and the method of an analysis of various signal patterns containing the information of neural activity is an issue of the post-processing methods for fMRI. In the present study, fMRI data was analyzed with the Independent Component Analysis(ICA) method that doesn't need a priori-knowledge or reference data. ICA can be more effective over the analytic method using cross-correlation analysis and can separate the signal patterns of the signals with delayed response or motion related components. The Principal component Analysis (PCA) threshold, wavelet spatial filtering and analysis of a part of whole images can be used for the reduction of the freedom of data before ICA analysis, and these preceding analyses may be useful for a more effective analysis. As a result, ICA method will be effective for the degree of freedom of the data.

  • PDF

Active Noise Control in Ductilike System using Adaptive Filtering (적응필터링에 의한 덕트계의 능동소음제어)

  • 이태연;김상명;송원식;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.17-22
    • /
    • 1991
  • 최근 기계장치로부터 발생하는 소음을 감소시키는 새로운 방법으로서, 능동 적으로 소음을 제어하는 방법에 대한 연구가 활발히 진행되고 있다. 이것은 원하지 않는 소음을 그 신호의 역위상을 갖는 부가음을 이용하여 능동적으 로 감쇠시키는 방법으로서, 저주파수 대역에서 비효율적인 수동적인 방법인 소음기둥에 대한 대안으로 많은 학자들의 관심의 대상이 되어 왔다. 초기에 는 소음을 줄이기 위해 요구되는 여러가지 음향요소의 전달함수를 제어하는 데 대한 불가능성으로 인해 능동 소음제어에 대한 실질적인 발전이 지연되 어 왔으나 최근 마이크로 컴퓨터를 비롯한 전자공학의 발전으로 인해 적응 신호처리 분야가 등장하게 되었으며, 음향계의 소음을 원하는 수준까지 제어 하는 능동 소음제어의 실시간 구현이 가능하게 되었다. 그 중에서도 음이 1 차원적으로 전파한다고 볼 수 있는 길이가 긴 덕트구조물에서의 능동 소음 제어는 가장 기본적이며 현실적으로 자동차 배기계나 냉동.공조설비에 있어 서 실용적으로 적용할 수 있는 문제임 만큼 많은 연구가 이루어지고 있다. 이러한 능동 소음제어 방법을 음향계에 적용하였을 때, 부가적인 음을 발생 하는 제어용 스피커로 인해 입력마이크로폰으로의 음향궤환이 존재하고 이 에 따라 제어계가 불안정해질 수 있으며, 또한 변환기의 사용으로 인한 부가 적인 전달함수가 존재하므로 이에 대한 중요한 의미를 갖고 고려하여야 한 다. 본 연구에서는 적응 필터링 이론에 의한 소음원의 입력신호에 대한 최적 한 예측으로써 부가음을 발생시키고, 입력신호 및 제어된 출력신호간의 차인 오차를 최소화 시키도록 하는 오차적응제어법을 이용한 능동소음 제어 방법 을 제시하였다. 이와 아울러 제어계의 환경변화에 따른 파라메타의 변화에 적응적으로 응답이 가능해야 하는 적응 소음제어 시스템에서, 음향궤환과 함 께 필히 고려해야 하는 부가적인 전달함수의 영향을 고려한 능동 소음제어 에 대해 연구하였다. 경량화 추세에 따라 지반이나 케이싱이 경량이거나 유연하여 회전축과 동적으로 연성된 경우 회전축-베어링-지반으로 이루어진 2중구조의 회전축 계 동특성을 해석할 수 있는 프로그램을 개발하므로서 회전 기계류의 진동 전반에 걸친 문제점에 대한 그 원인과 현상을 명확히 분석하여 국내의 전기 계류의 보다 신뢰성있는 설계 및 제작자료를 확보하는데 기여할 수 있게 하 였다.존의 small molecular Gd-chelate에 비해 매우 큼을 알 수 있었다. MnPC는 간세포에 흡수된 후 담도계로 배출되는 간특이성 조영제임을 확인하였다. 장비 내에서 반복 시행한 평균값의 차이는 대체적으로 유의한 차이가 없었으나, 다른 장비에서 반복 시행한 장비간의 사이에는 유의한 차이가 있는 경우가 더 많았다. 따라서 , MRS 검사를 소뇌나 뇌교의 어떤 절환에 적용하기 전에 각 장비 마다 정상 기준치를 반드시 얻은 후에 이상여부를 판 정하는 것이 필수적이라고 생각된다.EX> 이상이 적절한 진단기준으로 생각되었다. $0.4{\;}\textrm{cm}^3$ 이상의 좌우 부피차를 보이는 모든 증례에서 육안적으로도 해마위축이 뚜렷이 나타났다. 결론 : MR영상을 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field

  • PDF

A Study on Optical Coherence Tomography System by Using the Optical Fiber (광섬유를 이용한 광영상단층촬영기 제작에 관한 연구)

  • 양승국;박양하;장원석;오상기;이석정;김기문
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2004
  • In this paper, we have studied the OCT(Optical Coherence Tomography) system which has been advantages of high resolution, 2-D cross-sectional images, low cost and small size configuration. The characteristics of light source determine the resolution and coherence length. The light source has a commercial SLD with a central wavelength of 1,285 ill11, 35.3 nm(FWHM). The optical delay line is necessary to make equal with the optical path length to scattered light or reflected light from a sample. In order to make equal the optical path length, the stage that is attached to a reference mirror is controled by a step motor. And the interferometer is configured with the Michelson interferometer by using a single mode fiber, and the scanner can be focused on the sample by using a reference ann Also, the 2-dimension cross-sectional images were measured with scanning the transverse direction of the sample by using a step motor. After detecting the internal signal of lateral direction, a scanner is moved to obtain the cross-sectional image of 2-dimension by using step motor. A photodiode, which has high detection sensitivity and excellent noise characteristics has been used. The detected small signal has a noise and interference. After filtering and amplifying the signal, the output signal is demodulated the waveform And then, a cross-sectional image is seen through converting this signal into a digitalized signal by using an AID converter. The resolution of the sample is about 30${\mu}{\textrm}{m}$, which corresponds to the theoretical resolution. Also, the cross-sectional images of onion cells were measured in real time scheme.

Packet Loss Concealment Algorithm Based on Speech Characteristics (음성신호의 특성을 고려한 패킷 손실 은닉 알고리즘)

  • Yoon Sung-Wan;Kang Hong-Goo;Youn Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.691-699
    • /
    • 2006
  • Despite of the in-depth effort to cantrol the variability in IP networks, quality of service (QoS) is still not guaranteed in the IP networks. Thus, it is necessary to deal with the audible artifacts caused by packet lasses. To overcame the packet loss problem, most speech coding standard have their own embedded packet loss concealment (PLC) algorithms which adapt extrapolation methods utilizing the dependency on adjacent frames. Since many low bit rate CELP coders use predictive schemes for increasing coding efficiency, however, error propagation occurs even if single packet is lost. In this paper, we propose an efficient PLC algorithm with consideration about the speech characteristics of lost frames. To design an efficient PLC algorithm, we perform several experiments on investigating the error propagation effect of lost frames of a predictive coder. And then, we summarize the impact of packet loss to the speech characteristics and analyze the importance of the encoded parameters depending on each speech classes. From the result of the experiments, we propose a new PLC algorithm that mainly focuses on reducing the error propagation time. Experimental results show that the performance is much higher than conventional extrapolation methods over various frame erasure rate (FER) conditions. Especially the difference is remarkable in high FER condition.

Enhancement of Ionospheric Correction Method Based on Multiple Aperture Interferometry (멀티간섭기법에 기반한 이온왜곡 보정기법의 보완)

  • Lee, Won-Jin;Jung, Hyung-Sup;Chae, Sung-Ho;Baek, Wonkyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.101-110
    • /
    • 2015
  • Synthetic Aperture Radar Interferometry (InSAR) is affected by various noise source such as atmospheric artifact, orbital error, processing noise etc.. Especially, one of the dominant noise source for long-wave SAR system, such as ALOS PALSAR (L-band SAR satellite) is the ionosphere effect because phase delays on radar pulse through the ionosphere are proportional to the radar wavelength. To avoid misinterpret of phase signal in the interferogram, it is necessary to detect and correct ionospheric errors. Recently, a MAI (Multipler Aperture SAR Interferometry) based ionospheric correction method has been proposed and considered one of the effective method to reduce phase errors by ionospheric effect. In this paper, we introduce the MAI-based method for ionospheric correction. Moreover we propose an efficient method that apply the method over non-coherent area using directional filter. Finally, we apply the proposed method to the ALOS PALSAR pairs, which include the west sea coast region in Korea. A polynomial fitting method, which is frequently adopted in InSAR processing, has been applied for the mitigation of phase distortion by the orbital error. However, the interferogram still has low frequency of Sin pattern along the azimuth direction. In contrast, after we applied the proposed method for ionospheric correction, the low frequency pattern is mitigated and the profile results has stable phase variation values within ${\pm}1rad$. Our results show that this method provides a promising way to correct orbital and ionospheric artifact and would be important technique to improve the accuracy and the availability for L-band or P-band systems.