• Title/Summary/Keyword: 지연시간 보정

Search Result 124, Processing Time 0.029 seconds

A Compensative Synchronization Algorithm for Multimedia Presentation System (멀티미디어 프리젠테이션 시스템을 위한 보정적 동기화 알고리즘)

  • Jung, H.K.
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.123-129
    • /
    • 1995
  • This paper describes the design and implementation of multimedia presentation system based on the compensative synchronization algorithm. We proposed the compensative synchronization algorithm in compensation for previously preestimated delay-time in order to minimize delay-time in multimedia presentation system. The presentation system uses compensative synchronization algorithm and have multimedia objects as text, raster graphics, geometric graphics, or audio.

  • PDF

A Position Estimation Using Time Delay Difference (시간 지연차를 이용한 표적의 위치 추적)

  • 윤동욱
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.197-200
    • /
    • 1998
  • 본 논문에서는 기존의 방법에 의해 추정된 시간 지연의 차를 이용하여 표적의 위치를 추적하는 방법을 제시한다. 표적 위치를 추정하는 알고리즘의 전단에서 시간 지연의 차를 보정하는 과정을 수행하고, 후단에서 칼만 필터로 smoothing을 하는 방법을 제시한다. 이 방법을 사용하여 최소 2N-2개의 시간 지연 차를 이용하여 표적의 위치를 보다 정확히 추적할 수 있다.

  • PDF

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

A Stable Time Error Correction using Time Synchronization Client over Internet (인터넷 시각동기 클라이언트를 통한 안정적 시각오류 보정 방법)

  • 강봉호;민충식;이영종;김영호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10c
    • /
    • pp.543-545
    • /
    • 1999
  • 컴퓨터 시스템은 주파수를 제공하는 수정발진자의 환경적 요인에 의한 오차 등으로 인해 정확한 시각을 유지하지 못한다. 정확한 시각 유지를 통해 외부 시각원으로부터 시각신호를 받아 로컬 시스템의 시각오류를 보정하는 시각동기 클라이언트를 이용하는 방법을 연구하였다. 정밀도 향상을 위해 다중서버 선택기능을 보강하였고, 지연시간에 따른 시각원의 가중치를 적용하였다. 특히 시각변화에 민감한 프로세스가 많은 시스템에서 시각 오류 보정시 시각의 급변은 시스템에 무리를 일으키므로 점근적 보정을 통한 안정적 방법이 필요하다. 이를 위해 축적결과기반 시각오류 보정방법을 적용하여 네트워크 지연의 급작스런 변화에도 분산을 통한 충격을 완화하여 안정적인 시각보정을 할 수 있도록 하였다. 시각오류 요인과 시각동기방법, 클라이언트 구현과 실험결과를 제시한다.

  • PDF

The Implementation of the Compensation Algorithm of Time Delay for Microwave Polar Transmitters (마이크로파 폴라 송신기의 시간지연 보상 알고리즘 구현)

  • Kim, Min-Soo;Lee, Kun-Joon;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.790-797
    • /
    • 2015
  • In this paper, We made the microwave polar transmitter based on the software to analyze the synchronization status between the phase signal and the amplitude signal of polar transmitter, and analyzed the result. In order to solve the time delay mismatch problem, we applied simplified compensation algorithm and compared the synchronization status between the two paths before and after compensation. Before compensation, the value of time delay mismatch was the maximum of 97 nsec at 9.3 GHz with the occupied bandwidth of 12 MHz, but after applying the compensation algorithm, the signals between the two paths were synchronized, and we identified the occupied bandwidth could recover to the previous 3.7 MHz.

LAGEOS 11 위성의 LASER 관측자료를 이용한 정밀 거리 결정

  • ;He Miaofu;Tan Detong;Cui Douxing
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.04a
    • /
    • pp.7.1-7
    • /
    • 1993
  • 위성의 정밀 거리 결정을 위해 1993년 9월 5일부터 IS일간 중국의 상해 천문대 Sheshan관측소와 장춘 인공위성 관측소에서 LAGEOS 11 (Laser Geodynamics Satellite II)에 대한 SLR (Satellite Laser Ranging) 관측을 수행하였다. SLR 관측에서는 지상의 관측소에서 발사한 LASER 펄스 (pulse)가 반사경들(retroflectors)로 둘러싸인 인공위성에 반사되어 돌아오는 RTT (Round Trip Time)를 측정하여 위성까지의 거리를 결정하는데, 관측된 시간과 거리 자료는 많은 잡음(noise)를 포함하고 있기 때문에 정확한 자료를 얻기 위해서는 많은 보정이 필요하다. 관측된 시간, 거리 자료를 지상 목표물 조준(ground target ranging )에 의한 system보정, 원자시계와 GPS에서 수신된 시간과의 시간 비교, 측정된 온도, 기압, 상대 습도에 따른 대기 영향의 보정 등을 통해 오차를 줄이고 다시 LASERF beam의 대기 굴절에 따른 거리 변화 보정, 위성의 질량 중심 거리(offset) 보정, 조석력에 의한 변화값 보정, 전자기적 지연(electromagnetic delay)에 의한 상대론적 보정등을 통해서 정밀한 거리 자료를 얻었다.

  • PDF

Path selection algorithm for multi-path system based on deep Q learning (Deep Q 학습 기반의 다중경로 시스템 경로 선택 알고리즘)

  • Chung, Byung Chang;Park, Heasook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.50-55
    • /
    • 2021
  • Multi-path system is a system in which utilizes various networks simultaneously. It is expected that multi-path system can enhance communication speed, reliability, security of network. In this paper, we focus on path selection in multi-path system. To select optimal path, we propose deep reinforcement learning algorithm which is rewarded by the round-trip-time (RTT) of each networks. Unlike multi-armed bandit model, deep Q learning is applied to consider rapidly changing situations. Due to the delay of RTT data, we also suggest compensation algorithm of the delayed reward. Moreover, we implement testbed learning server to evaluate the performance of proposed algorithm. The learning server contains distributed database and tensorflow module to efficiently operate deep learning algorithm. By means of simulation, we showed that the proposed algorithm has better performance than lowest RTT about 20%.

An Analysis on the Real-Time Performance of the IGS RTS and Ultra-Rapid Products (IGS RTS와 Ultra Rapid 실시간 성능 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • For real-time precise positioning, IGS provides ephemeris predictions (IGS ultra-rapid, IGU) and real-time ephemeris estimates (real-time service, RTS). Due to the RTS data latency, which ranges from 5 s to 30 s, a short-term prediction process is necessary before applying the RTS corrections. In this paper, the real-time performance of the RTS correction and IGU prediction are compared. The RTS correction availability for the GPS satellites observed in Korea is computed as 99.3%. The RTS correction is applied to broadcast ephemeris to verify the accuracy of the RTS correction. The 3D orbit RMS error of the RTS correction is 0.043 m. Prediction of the RTS correction is modeled as a polynomial, and then the predicted value is compared with the IGU prediction value. The RTS orbit prediction accuracy is nearly equivalent to the IGU prediction, but RTS clock prediction performance is 0.13 m better than the IGU prediction.

I-Q Channel 12bit 1GS/s CMOS DAC for WCDMA (WCDMA 통신용 I-Q 채널 12비트 1GS/s CMOS DAC)

  • Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Kim, Soo-Jae;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.56-63
    • /
    • 2008
  • This paper describes a 12 bit 1GS/s current mode segmented DAC for WCDMA communication. The proposed circuit in this paper employes segmented structure which consists of 4bit binary weighted structure in the LSB and 4bit thermometer decoder structure in the mSB and MSB. The proposed DAC uses delay time compensation circuits in order to suppress performance decline by delay time in segmented structure. The delay time compensation circuit comprises of phase frequency detector, charge pump, and control circuits, so that suppress delay time by binary weighted structure and thermometer decoder structure. The proposed DAC uses CMOS $0.18{\mu}m$ 1-poly 6-metal n-well process, and measured INL/DNL are below ${\pm}0.93LSB/{\pm}0.62LSB$. SFDR is approximately 60dB and SNDR is 51dB at 1MHz input frequency. Single DAC's power consumption is 46.2mW.

Kirchhoff Prestack Depth Migration for the Complex Structure Using One-Way Wave Equation (일방향 파동방정식을 이용한 복잡한 구조의 키리히호프 중합전 심도구조보정)

  • Ko, Seung-Won;Yang, Seung-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2002
  • As a single arrival traveltime, maximum energy arrival traveltime has been known as the most proper operator for Kirchhoff migration. In case of the model having the simple structure, both the first arrival traveltime and the maximum energy arrival traveltime can be used as the correct operators for Kirchhoff migration. However for some model having the complex and high velocity contrast structure, the migration using the first arrival traveltime can't give the correct depth section. That is, traveltime to be required in Kirchhoff migration is the maximum energy traveltime, but, needs considerably more calculation time than that of first arrival. In this paper, we propose the method for calculating the traveltime approximated to the maximum energy arrival using one-way wave equation. After defining the WAS(Wrap Around Suppression) factor to be used for calculating the first arrival traveltime using one-way wave equation as the function of lateral grid interval and depth and considering the delay time of source wavelet. we calculate the traveltime approximated to the maximum energy arrival. to verify the validity of this traveltime, we applied this to the migraion for simple structure and complex structure and compared the depth section with that obtained by using the first arrival traveltime.