Annual Conference on Human and Language Technology
/
2010.10a
/
pp.3-8
/
2010
본 연구에서는 일련의 연구에서 수집된 영작문 오류 유형의 정제된 자료를 토대로 연관 규칙을 생성하고, 학습을 통해서 효용성이 검증된 연관 규칙을 활용해서 영작문 데이터의 형태 통사 오류를 자동으로 탐지한다. 영작문 데이터에서 형태 통사 오류를 찾아내는 작업은 많은 시간과 자원이 소요되는 작업이므로 자동화가 필수적이다. 기존의 연구들이 통계적 모델을 활용한 어휘적 오류에 치중하거나 언어 이론적 틀에 근거한 통사 처리에 집중하는 반면에, 본 연구는 데이터 마이닝을 통해서 정제된 데이터에서 연관 규칙을 생성하고 이를 검증한 후 형태 통사 오류를 감지한다. 이전 연구들에서는 이론적 틀에 맞추어진 규칙 생성이나 언어 모델 생성을 위한 대량의 코퍼스 데이터와 같은 다량의 지식 베이스 생성이 필수적인데, 본 연구는 적은 양의 정제된 데이터를 활용한다. 영작문 오류 유형의 형태 통사 연관 규칙을 생성하기 위해서 Apriori 알고리즘을 활용하였다. 알고리즘을 통해서 생성된 연관 규칙 중 잘못된 규칙이 생성될 가능성이 있으므로, 상관성 검정, 코사인 유사도와 같은 규칙 효용성의 통계적 검증을 활용해서 타당한 규칙만을 학습하였다. 이를 통해서 축적된 연관 규칙들을 영작문 오류를 자동으로 탐지하는 실험에 활용하였다.
Park, In-Cheol;Bae, Woo-Jeong;An, Dong-Un;Lee, Yong-Seok
Annual Conference on Human and Language Technology
/
1995.10a
/
pp.43-49
/
1995
대부분 자연 언어 이해 시스템이나 중간 언어 방식을 이용한 기계 번역 시스템에서 자연 언어 문장을 이해하고 번역하기 위해서는 대량의 지식을 이용한 의미 구조의 생성이 요구된다. 따라서 개념 그래프를 이용하여 한국어 문장의 내부 의미 구조를 생성하기 위해서는 각 단어에 해당하는 개념과 개념들 사이의 개념적 관계를 나타내는 지식들이 요구된다. 그러나 이를 위한 의미 구조 생성 방법과 요구되는 지식 베이스를 정확하게 구축하는 것은 어렵고 응용 도메인에 종속한다는 문제가 있다. 본 논문에서 우리는 문형 이론을 도입하여 문형을 중심으로 의미 구조 생성을 위한 변환 규칙을 설계하고 이를 이용하여 방대한 지식 베이스의 구축없이 의미 구조를 생성할 수 있는 방법에 논의한다. 또한 본 논문에서 문형을 이용하면 몇 가지 모호성 문제를 해결할 수 있음을 보이고 문형의 한계에 대해서도 살펴본다.
Although Intelligent Tutoring System(ITS) offers individualized learning environment that overcome limited function of existent CAI, and consider many learners' variable, there is little development to be using at the sites of schools because of inefficiency of investment and absence of pedagogical content knowledge representation techniques. To solve these problem, we should study a method, which represents knowledge for ITS, and which reuses knowledge base. On the pedagogical content knowledge, the knowledge in education differs from knowledge in a general sense. In this paper, we shall primarily address the multi-complex structure of knowledge and explanation of learning vein using multi-complex structure. Multi-Complex, which is organized into nodes, clusters and uses by knowledge base. In addition, it grows a adaptive knowledge base by self-learning. Therefore, in this paper, we propose the 'Extended Neural Logic Network(X-Neuronet)', which is based on Neural Logic Network with logical inference and topological inflexibility in cognition structure, and includes pedagogical content knowledge and object-oriented conception, verify validity. X-Neuronet defines that a knowledge is directive combination with inertia and weights, and offers basic conceptions for expression, logic operator for operation and processing, node value and connection weight, propagation rule, learning algorithm.
Proceedings of the Korea Information Processing Society Conference
/
2001.10a
/
pp.233-236
/
2001
멀티미디어 데이터의 증가와 마이닝 기술의 발전으로 인해 멀티미디어 마이닝에 대한 관심이 증가하고 있다. 본 논문에서는 특성국지화를 이용한 내용기반의 정보검색 기술과 다차원 데이터큐브 구축기술을 통해 멀티미디어 데이터에서 연관규칙을 찾아내는 멀티미디어 데이터마이닝 시스템 프로토타입을 제안한다. 특히 멀티미디어 데이터의 칼라, 질감 등 거시적인 이미지 성분 대신 이미지의 영역성과 유사성을 이용한 특성국지화방법을 이용하여 이미지를 분할함으로써 방대한 데이타에서 효과적인 내용기반의 정의 검색을 시행하고 검색한 벡터를 메타데이타로 한 데이스베이스를 구축한다. 그리고 데이터베이스에서 데이터간 연관규칙을 찾아내어 지식을 마이닝하는데 효과적인 다차원 데이터큐브를 구축하고 여기에 연관규칙 검색 알고리즘을 적용한다.
Inference engine that performs the brain of software agent in next generation's web with various standards based on standard language of the web, XML has to understand SWRL (Semantic Web Rule Language) that is a language to express the rule in the Semantic Web. In this research, we want to develop a forward inference engine, SMART-F (SeMantic web Agent Reasoning Tools-Forward chaining inference engine) that uses SWRL as a rule express method, and OWL as a fact express method. In the traditional inference field, the Rete algorithm that improves effectiveness of forward rule inference by converting if-then rules to network structure is often used for forward inference. To apply this to the Semantic Web, we analyze the required functions for the SWRL-based forward inference, and design the forward inference algorithm that reflects required functions of next generation's Semantic Web deducted by Rete algorithm. And then, to secure each platform's independence and portability in the ubiquitous environment and overcome the gap of performance, we developed management tool of fact and rule base and forward inference engine. This is compatible with fact and rule base of SMART-B that was developed. So, this maximizes a practical use of knowledge in the next generation's Web environment.
OWL is an ontology language for the Semantic Web, and suited to modelling the knowledge of a specific domain in the real-world. Ontology also can infer new implicit knowledge from the explicit knowledge. However, the modeled knowledge cannot be complete as the whole of the common-sense of the human cannot be represented totally. Ontology do not concern handling nonmonotonic reasoning to detect incomplete modeling such as the integrity constraints and exceptions. A default rule can handle the exception about a specific class in ontology. Integrity constraint can be clear that restrictions on class define which and how many relationships the instances of that class must hold. In this paper, we propose a practical reasoning system for open and closed-world reasoning that supports a novel hybrid integration of ontology based on open world assumption (OWA) and non-monotonic rule based on closed-world assumption (CWA). The system utilizes a method to solve the problem which occurs when dealing with the incomplete knowledge under the OWA. The method uses the answer set programming (ASP) to find a solution. ASP is a logic-program, which can be seen as the computational embodiment of non-monotonic reasoning, and enables a query based on CWA to knowledge base (KB) of description logic. Our system not only finds practical cases from examples by the Protege, which require non-monotonic reasoning, but also estimates novel reasoning results for the cases based on KB which realizes a transparent integration of rules and ontologies supported by some well-known projects.
The Transactions of the Korea Information Processing Society
/
v.4
no.12
/
pp.3010-3022
/
1997
Expert system is one of AI area which was came out at the end of 19705s. It simulates the human's way of thinking to give solutions of Problem in many applications. Most expert system consists of many components such as inference engine, knowledge base, and so on. Especially the performance of expert system depends on the control of enfficiency of inference engine. Inference engine has to get features; tirst, if possible to minimize restrictions when the knowledge base is constructed second, it has to serve various kinds of inferencing methods. In this paper, we design and implement the inference engine which is able to support the general functions to knowledge domain and inferencing method. For the purpose, forward chaining, backward chaining, and direct chaining was employed as an inferencing method in order to be able to be used by user request selectively. Also we not on1y selected production system which makes one ease staradization and modulation to obtain knowledges in target domain, but also constructed knowledge base by means of Extended Clause Bit Metrics (ECBM). Finally, the performance evaluation of inference engine between Rete pattern matching and ECBM has been done.
In this paper, we propose heterogeneous lifelog mining model in health big-data platform. It is an ontology-based mining model for collecting user's lifelog in real-time and providing healthcare services. The proposed method distributes heterogeneous lifelog data and processes it in real time in a cloud computing environment. The knowledge base is reconstructed by an upper ontology method suitable for the environment constructed based on the heterogeneous ontology. The restructured knowledge base generates inference rules using Jena 4.0 inference engines, and provides real-time healthcare services by rule-based inference methods. Lifelog mining constructs an analysis of hidden relationships and a predictive model for time-series bio-signal. This enables real-time healthcare services that realize preventive health services to detect changes in the users' bio-signal by exploring negative or positive correlations that are not included in the relationships or inference rules. The performance evaluation shows that the proposed heterogeneous lifelog mining model method is superior to other models with an accuracy of 0.734, a precision of 0.752.
Data mining refers to a set of techniques for discovering implicit and useful knowledge from large database. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering knowledge from temporal database, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treat problems for discovering temporal pattern from data which are stamped with time points and do not consider problems for discovering knowledge from temporal interval data. For example, there are many examples of temporal interval data that it can discover useful knowledge from. These include patient histories, purchaser histories, web log, and so on. Allen introduces relationships between intervals and operators for reasoning about relations between intervals. We present a new data mining technique that can discover temporal relation rules in temporal interval data by using the Allen's theory. In this paper, we present two new algorithms for discovering algorithm for generating temporal relation rules, discovers rules from temporal interval data. This technique can discover more useful knowledge in compared with conventional data mining techniques.
Sophisticated geometric structure analysis must be preceded to create electronic document from logical components extracted from document image. this paper presents a knowledge-based method for sophisticated geometric structure analysis of technical journal pages. The proposed knowledge base encodes geometric characteristics that are not only common in technical journals but also publication-specific in the form rules. The method takes the hybrid of top-down and bottom-up techniques and consists of two phases: region segmentation and identification. Generally, the result of segmentation process does not have a one-to-one matching with composite layout components. Therefore, the proposed method identifies non-text objects such as image, drawing and table, as well as text objects such as text line and equation by splitting or grouping segmented regions into composite layout components. Experimental results with 372 images scanned from the IEEE Transactions on Pattern Analysis and Machine Intelligence show that the proposed method has performed geometrical structure analysis successfully on more than 99% of the test images, resulting in sophisticated performance compared with previous works.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.