Although previous studies show that organizational culture and organizational communication could be influential factors in knowledge management and organizational performance, the more integrated research to indicate relationships among all of the factors is still needed. By indicating the inter-relationships among the factors and the direction of the influence, this paper suggests various ways to develop an integrated approach to the improvement of organizational performance through knowledge management and other related factors. Thus, the purpose of this study is to investigate the relationships among national culture, organizational culture, organizational communication, knowledge management, and organizational performance. Based on a comprehensive review of extant literature on the relationships among these factors, the relationships are summarized in the conceptual model. According to the model, organizational performance is influenced by knowledge management, organizational communication, and organizational culture, and knowledge management is influenced by organizational communication and organizational culture. Based on the conceptual model, implications for human resource (HR) researchers and practitioners seeking to optimally improve organizational performance are presented.
Recommender systems provide users with the most favorable items by analyzing explicit or implicit feedback of users on items. Recently, as the size of deep-learning-based models employed in recommender systems has increased, many studies have focused on reducing inference time while maintaining high recommendation accuracy. As one of them, a study on recommender systems with a knowledge distillation (KD) technique is actively conducted. By KD, a small-sized model (i.e., student) is trained through knowledge extracted from a large-sized model (i.e., teacher), and then the trained student is used as a recommendation model. Existing studies on KD for recommender systems have been mainly performed only for implicit feedback settings. Thus, in this paper, we try to investigate the performance and accuracy when applied to explicit feedback settings. To this end, we leveraged a total of five state-of-the-art KD methods and three real-world datasets for recommender systems.
This study analyzed relative importance among business model factors for improving business performance of Knowledge Service Enterprises using the Business Model methodology. It also compares and analyzes the relative importance of manufacturing enterprises by using the previous research conclusion. This study finds Product & Service factor(0.361) is the most important among Marketing(0.251), Financial aspects(0.234), and Infrastructure(0.154) are follows. For the sub factors, Value Proposition(0.254) is the most importance factors and Revenue Streams(0.154), and Key Activities(0.107), and Key Resources(0.100), and Channels(0.086) are follows. Also, The Marketing has higher relative importance for Manufacturing enterprises, whereas the Product&Service has higher relative importance for Knowledge Service Enterprises. It proves that there is a difference in the relative importance between Manufacturing Enterprises and Knowledge Service Enterprises. This study concludes the importance of business model factor is different for each respective industry. Therefore, it suggests to consider different industrial aspects when build the business model for each industry.
The purpose of this study is to obtain basic data for constructing a modeling practice program integrated with meta-modeling knowledge by analyzing the cognition level for each meta-modeling knowledge components through modeling practice in the context of the chemistry discipline content. A chemistry teacher conducted inquiry-based modeling practice including anomalous phenomena for 16 students in the second year of a science gifted school, and in order to analyze the cognition level for each of the three meta-modeling knowledge components such as model variability, model multiplicity, and modeling process, the inquiry notes recorded by the students and observation note recorded by the researcher were used for analysis. The recognition level was classified from 0 to 3 levels. As a result of the analysis, it was found that the cognition level of the modeling process was the highest and the cognition level of the multiplicity of the model was the lowest. The cause of the low recognitive level of model variability is closely related to students' perception of conceptual models as objective facts. The cause of the low cognitive level of model multiplicity has to do with the belief that there can only be one correct model for a given phenomenon. Students elaborated conceptual models using symbolic models such as chemical symbols, but lacked recognition of the importance of data interpretation affecting the entire modeling process. It is necessary to introduce preliminary activities that can explicitly guide the nature of the model, and guide the importance of data interpretation through specific examples. Training to consider and verify the acceptability of the proposed model from a different point of view than mine should be done through a modeling practice program.
Journal of Korea Society of Industrial Information Systems
/
v.26
no.6
/
pp.17-34
/
2021
As knowledge management is recognized as an important factor for organizational performance, organizations are increasing their investment in knowledge management policies and technologies. The purpose of this study is to suggest positive and negative causes on the intention to share knowledge through a using knowledge management system(KMS) and to suggest the effect of organizational sharing climate. Research models and hypotheses were presented through previous studies, and 417 samples were obtained through the survey for employees of organizations that adopted a KMS. As a result of the analysis, usefulness and ease of use of the KMS had a positive effect on the intention to share knowledge, and task conflict and ambiguity had a negative effect. The knowledge sharing climate was found to be an antecedent for the technology acceptance model and task stress. In addition, task stress moderated the effect of usefulness and ease of use with the intention to share knowledge using KMS. The results suggested the direction to be pursued at the organizational level for the continuous use of KMS.
Journal of the Korean Data and Information Science Society
/
v.8
no.1
/
pp.1-7
/
1997
The inference process for medical expert system is mostly formed by diagnostic knowledge on the if-then rule base. Oriental medicine diagnostic knowledge, however, may involve uncertain knowledge caused by ambiguous concept. In this paper, we analyze an oriental medicine diagnostic process by a rule-based inference system, and propose a method for representing and processing uncertain oriental medicine diagnostic knowledge using CLP( R ) which is a kind of constraint satisfaction program.
지식과 정보의 중요성이 강조되는 지식기반사회에서는 지식재산권의 대표적인 유형인 특허의 중요성이 날로 높아지고 있고, 그 수 또한 급증하고 있다. 특허 문서의 효과적 검색과 이용을 위해서는 새롭게 출원되는 특허 문서의 체계적인 분류 작업이 선행되어야 하고, 따라서 방대한 양의 특허 문서를 자동으로 분류해주는 시스템이 필요하다. 본 연구에서는 Doc2Vec 모델을 이용하여 국내 특허 문서의 특징(feature)을 추출하고, 추출된 특징을 바탕으로 한 특허 문서의 자동 분류 모형을 제안한다. 먼저 국내에 등록된 31,495 건의 특허 문서의 IPC(International Patent Classification)와 요약정보를 바탕으로 Doc2Vec 모델을 구축하였다. 구축된 Doc2Vec 모델을 통하여 훈련데이터의 특징을 추출한 후, 이 특징 벡터를 이용하여 분류기를 학습하였다. 마지막으로 Doc2Vec 모델을 이용하여 실험데이터의 특징 벡터를 추출하고 분류기의 성능을 실험한 결과, 43%의 분류 정확도를 얻었다. 이를 통해, 특허 문서 분류 문제에 Doc2Vec 모델의 사용 가능성을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.301-305
/
2023
최근 등장한 Large Language Models (LLM)은 자연어 처리 분야에서 눈에 띄는 성과를 보여주었지만, 주로 영어 중심의 연구로 진행되어 그 한계를 가지고 있다. 본 연구는 사전 학습된 LLM의 언어별 지식 전이 가능성을 한국어를 중심으로 탐구하였다. 이를 위해 한국어와 영어로 구성된 코드 스위칭 코퍼스를 구축하였으며, 기본 모델인 LLAMA-2와 코드 스위칭 코퍼스를 추가 학습한 모델 간의 성능 비교를 수행하였다. 결과적으로, 제안하는 방법론으로 학습한 모델은 두 언어 간의 희미론적 정보가 효과적으로 전이됐으며, 두 언어 간의 지식 정보 연계가 가능했다. 이 연구는 다양한 언어와 문화를 반영하는 다국어 LLM 연구와, 소수 언어를 포함한 AI 기술의 확산 및 민주화에 기여할 수 있을 것으로 기대된다.
Selection of profitable research and development (R&D) projects is one of the major factors affecting sustained growth of firms and countries. This paper analyze what influences the knowledge on the business model exerted on selection of a R&D project. A business model converts the technology value to the customer value, and comprehensively describes the target customers for commercializing a new technology, core values, behaviors within organizations, resources, and external partners. Thus, understanding a business model would make R&D project evaluators place the feasibility and profitability of the business above the merits of the proposed technology in evaluating the technology development. To verify this hypothesis, we had 78 R&D project evaluators acquire the knowledge on the business model and measured how their criteria for R&D project selection have changed using the AHP method. The results shows that feasibility and profitability are more important than the merit of proposed technology, especially capability of company and business development are more important than the levels of technology innovation.
With the recent rapid development of deep learning technology, the demand for analyzing huge text documents in the national R&D field from various perspectives is rapidly increasing. In particular, interest in the application of a BERT(Bidirectional Encoder Representations from Transformers) language model that has pre-trained a large corpus is growing. However, the terminology used frequently in highly specialized fields such as national R&D are often not sufficiently learned in basic BERT. This is pointed out as a limitation of understanding documents in specialized fields through BERT. Therefore, this study proposes a method to build an R&D KoBERT language model that transfers national R&D field knowledge to basic BERT using further pre-training. In addition, in order to evaluate the performance of the proposed model, we performed classification analysis on about 116,000 R&D reports in the health care and information and communication fields. Experimental results showed that our proposed model showed higher performance in terms of accuracy compared to the pure KoBERT model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.