Annual Conference on Human and Language Technology
/
2023.10a
/
pp.31-35
/
2023
최근에는 질의응답(Question Answering, QA) 분야에서 거대 언어 모델(Large Language Models, LLMs)의 파라미터에 내재된 지식을 활용하는 방식이 활발히 연구되고 있다. Open Domain QA(ODQA) 분야에서는 기존에 정보 검색기(retriever)-독해기(reader) 파이프라인이 주로 사용되었으나, 최근에는 거대 언어 모델이 독해 뿐만 아니라 정보 검색기의 역할까지 대신하고 있다. 본 논문에서는 거대 언어 모델의 내재된 지식을 사용해서 질의 응답에 활용하는 방법을 제안한다. 질문에 대해 답변을 하기 전에 질문과 관련된 구절을 생성하고, 이를 바탕으로 질문에 대한 답변을 생성하는 방식이다. 이 방법은 Closed-Book QA 분야에서 기존 프롬프팅 방법 대비 우수한 성능을 보여주며, 이를 통해 대형 언어 모델에 내재된 지식을 활용하여 질의 응답 능력을 향상시킬 수 있음을 입증한다.
연합학습은 원본 데이터를 공유하지 않고 모델을 학습할 수 있는 각광받는 프라이버시를 위한 학습방법론이다. 이를 위해 참여자의 데이터를 수집하는 대신, 데이터를 인공지능 모델 학습의 요소들(가중치, 기울기 등)로 변환한 뒤, 이를 공유한다. 이러한 강점에 더해 기존 연합학습을 개선하는 방법론들이 추가적으로 연구되고 있다. 기존 연합학습은 모델 가중치를 평균내는 것으로 참여자 간에 동일한 모델 구조를 강요하기 때문에, 참여자 별로 자신의 환경에 알맞은 모델 구조를 사용하기 어렵다. 이를 해결하기 위해 지식 증류 기반의 연합학습 방법(Knowledge Distillation-based Federated Learning)으로 서로 다른 모델 구조를 가질 수 있도록(Model Heterogenousity) 하는 방법이 제시되고 있다. 연합학습은 여러 참여자가 연합하기 때문에 일부 악의적인 참여자로 인한 모델 포이즈닝 공격에 취약하다. 수많은 연구들이 기존 가중치를 기반으로한 연합학습에서의 위협을 연구하였지만, 지식 증류 기반의 연합학습에서는 이러한 위협에 대한 조사가 부족하다. 본 연구에서는 최초로 지식 증류 기반의 연합학습에서의 모델 성능 하락 공격에 대한 위협을 실체화하고자 한다. 이를 위해 우리는 GMA(Gaussian-based Model Poisoning Attack)과 SMA(Sign-Flip based Model Poisoning Attack)을 제안한다. 결과적으로 우리가 제안한 공격 방법은 실험에서 최신 학습 기법에 대해 평균적으로 모델 정확도를 83.43%에서 무작위 추론에 가깝게 떨어뜨리는 것으로 공격 성능을 입증하였다. 우리는 지식 증류 기반의 연합학습의 강건성을 평가하기 위해, 새로운 공격 방법을 제안하였고, 이를통해 현재 지식 증류 기반의 연합학습이 악의적인 공격자에 의한 모델 성능 하락 공격에 취약한 것을 보였다. 우리는 방대한 실험을 통해 제안하는 방법의 성능을 입증하고, 결과적으로 강건성을 높이기 위한 많은 방어 연구가 필요함을 시사한다.
As knowledge is now being distributed and shared through the Internet not only in the form of text but also in that of video, UCC (User Created Content) knowledge video sharing services have emerged on the Internet such as Instructables.com. This paper deals with a UCC knowledge video service in real world and reports the case of analyzing its customer model. The knowledge video sharing service can be considered as both a kind of discontinuous innovation, which requires knowledge provider's technical ability of creating and editing UCC video, and a value network, which matches UCC providers and consumers therefore brings network effect, we first adopt the Chasm theory as the base of the customer model and refine the customer model referencing the Technographics, which is also an Internet-refinement of the Chasm model. Finally, non-customer analysis of Blue Ocean strategy is applied for exploring potential customers of the service.
Korean Journal of Construction Engineering and Management
/
v.3
no.4
s.12
/
pp.104-113
/
2002
Knowledge Management(KM), represented as a way to sustain or gain competitive edge in domestic construction companies since late 1990s economic fluctuation, whose priority is to transform individual tacit knowledge into explicit organizational one. Also, accompanied by academic researches, they come to turn their interests on KM leveling and its results. However, they went too far to KM results without commenting what their KM capabilities are and where they should lead. Thus, this research work suggests a leveling model for KM, especially construction company, whose role is to diagnose which parts they should be encouraged or how to strengthen their present capabilities.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.3-5
/
1998
본 연구팀에서는 기존의 기호주의 전문가 시스템의 경우 지식표현 체계가 의미구조를 반영하지 못함으로써 발생하는 경직성문제를 해결하기 위해 CSN(Connectionist Semantic Network) 모델을 제안하였다. 그러나 CSN모델은 상위개념간의 관계를 표현하기 위해 단순한 전향 신경망을 사용함으로써 상위개념간의 일반적이고 구조화된 지식표현 및 추론에 어려움이 있었다. CSN 모델의 이런 문제점을 위해 본 논문에서는 상위개념간의 일반적이고 구조화된 지식표현과 추론이 용이한 기호주의 표현 체계와 이 표현 체계 안에 효과적으로 의미구조를 반영할 수 있는 연결주의 학습 모델인 CSN을 결합한 하이브리드 구조를 제안하고, 실험을 통하여 제안된 하이브리드 구조의 타당성을 보인다.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.284-288
/
2006
본 논문은 시맨틱 웹 기술이 융합된 지식기반 정보유통 플랫폼(OntoFrame-K$^{(R)}$)의 추론 서비스 시스템 (OntoThink-K$^{(R)}$)에서 이용되는 Persistent Model인 DBMS기반의 온톨로지 확장 모델에 대해 설명하고자 한다. OntoFrame-K$^{(R)}$는 대용량의 지식 데이터를 다루기 때문에 기존에 개발된 온톨로지 추론 엔진을 이용할 경우 많은 한계점을 가지게 된다. 따라서 우리는 대용량의 지식 데이터를 안정적으로 처리할 수 있으며 추론의 신뢰성과 정합성을 가지는 온톨로지 확장 모델을 설계, 구현하였다. 본 모듈은 OWL과 인스턴스 데이터를 트리플 형태로 변환하여 입력 받은 후, 온톨로지 스키마 규칙과 사용자 정의 규칙을 이용한 정방향 추론 방법으로 추론 서비스에서 필요한 지식데이터들을 생성하는 역할을 한다. 본 모델은 DBMS를 이용하여 대용량의 지식 데이터를 저장할 수 있으며, 추론 규칙에 따른 정방향 추론을 통해 지식 모델을 확장하기 때문에 데이터의 정합성이 보장된다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.409-414
/
2023
최근 지식 기반 대화 생성에 많은 연구자가 초점을 맞추고 있다. 특히, 특정 도메인에서의 작업 지향형 대화 시스템을 구축하는 것은 다양한 도전 과제가 있으며, 이 중 하나는 거대 언어 모델이 입력과 관련된 지식을 활용하여 응답을 생성하는 데 있다. 하지만 현재 거대 언어 모델은 작업 지향형 대화에서 단순히 정보를 열거하는 방식으로 응답을 생성하는 경향이 있다. 이 논문에서는 전문 지식과 대화 정책 예측 모델을 결합한 프롬프트를 제시하고 작업 지향형 대화에서 사용자의 최근 입력에 대한 정보 제공 및 일상 대화를 지원하는 가능성을 탐구한다. 이러한 새로운 접근법은 모델 파인튜닝에 비해 비용 측면에서 효율적이며, 향후 대화 생성 분야에서 발전 가능성을 제시한다.
Introduction : Animal studies cannot be applied directly to Occupational Therapy(OT) intervention protocol. However, animal models still provide essential evidences and knowledge to improve OT practice and to develop OT theories as well as human studies do. The purpose of this scholarly paper is to explore the potential of animal models to inform OT theory and practice particularly as it relates to neuroscience. Body : The animal models provide related knowledge for a better understanding of the mechanism of diseases and related neural networks. Based on this knowledge, researchers can test their hypothesis of neural disease. In addition, accumulated animal studies contribute to introduce the new approaches to human diseases and to improve the effectiveness of treatment. Conclusions : Animal models of neurological disease are critical and have the potential to improve OT practice and theory in many ways. Therefore, OT researchers need to pay more attention to animal models in addition human studies.
Proceedings of the Korea Society of Information Technology Applications Conference
/
2002.11a
/
pp.490-501
/
2002
기업의 생산성향상과 이익률에 영향을 줄 수 있는 지식이 경제 전반에 확산되어 나가는 과정은 한 나라의 경제발전속도에 영향을 미치는 중요한 요인이다. 기업 측면에서는 도입하려는 기술이 도입 후에 그 기업의 이익을 높여 줄 수 있다면 도입하지 않을 이유가 없다. 하지만 미래 수요의 불확실성이나 기술발전 방향의 불확실성 등으로 해서 기업으로서는 도입 후의 이익을 정확히 사전적으로 측정하기는 어렵다. 본 논문에서는 학계에서 일반적으로 사용되고 있는 두 가지 지식확산 모델을 설명하고자 한다. 그 하나는 하나의 새로운 기술이나 상품이 시간이 흐름에 따라 어떻게 전체 사용 가능자(population)에게 확산되는 지를 보여주는 1) Epidemic Diffusion Model (흔히 5자형 - Sigmoid - 모델이라고도 한다. )과 어떤 도입자가 어느 시점에서 대상이 된 새로운 기술을 도입할 것인지 아닌지를 결정하는 모델로서 2) Probit Diffusion Model (프로빗 모델)을 중심으로 한다 그리고 이러한 지식확산과정과 속도에 영향을 줄 수 있는 기업 내부적 요인으로서 도입하고자 하는 기업의 누적된 경험이 중요하다는 것과 기업 외부적 요인으로서 네트웍 효과와 같은 요인들을 설명하였다.
Proceedings of the Korea Society for Industrial Systems Conference
/
2002.11a
/
pp.490-501
/
2002
기업의 생산성향상과 이익률에 영향을 줄 수 있는 지식이 경제 전반에 확산되어 나가는 과정은 한 나라의 경제발전속도에 영향을 미치는 중요한 요인이다. 기업 측면에서는 도입하려는 기술이 도입 후에 그 기업의 이익을 높여 줄 수 있다면 도입하지 않을 이유가 없다. 하지만 미래 수요의 불확실성이나 기술발전 방향의 불확실성 등으로 해서 기업으로서는 도입 후의 이익을 정확히 사전적으로 측정하기는 어렵다. 본 논문에서는 학계에서 일반적으로 사용되고 있는 두 가지 지식확산 모델을 설명하고자 한다. 그 하나는 하나의 새로운 기술이나 상품이 시간이 흐름에 따라 어떻게 전체 사용 가능자(population)에게 확산되는 지를 보여주는 1) Epidemic Diffusion Model (흔히 S자형 - Sigmoid - 모델이라고도 한다.)과 어떤 도입자가 어느 시점에서 대상이 된 새로운 기술을 도입할 것인지 아닌지를 결정하는 모델로서 2) Probit Diffusion Model (프로빗 모델)을 중심으로 한다. 그리고 이러한 지식확산과정과 속도에 영향을 줄 수 있는 기업 내부적 요인으로서 도입하고자 하는 기업의 누적된 경험이 중요하다는 것과 기업 외부적 요인으로서 네트웍 효과와 같은 요인들을 설명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.