• Title/Summary/Keyword: 지식 모델

Search Result 1,915, Processing Time 0.033 seconds

국방지식경영 프레임웍과 추진모델에 관한 연구

  • 신태철;서의호;서치종
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.223-232
    • /
    • 2001
  • 지식, 정보사회에로의 급속한 변화에 따라 지식경영은 국방분야에서도 군사력의 향상과 경제적 군 운용을 위한 중요한 경영패러다임이 되었다. 군에서 지식경영을 도입하기 위해서는 학계에서 연구되어온 지식경영의 제반개념을 바탕으로 군 현실과 특성에 부합하는 지식경영의 프레임웍과 모델이 필요하다. 본 논문에서는 지식프로세스, 영향요소 및 기반요소로 구성되고 조직 문화와 정보기술이 중시된 국방지식경영 프레임웍을 제시한다. 또한 국방지식경영 추진을 위하여 준비단계, 도입단계, 확산단계 및 성숙단계로 구성된 지식경영 추진모델을 제안한다.

  • PDF

Deep Learning Model for Weather Forecast based on Knowledge Distillation using Numerical Simulation Model (수치 모델을 활용한 지식 증류 기반 기상 예측 딥러닝 모델)

  • 유선희;정은성
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.530-531
    • /
    • 2023
  • 딥러닝에서 지식 증류 기법은 큰 모델의 지식을 작은 모델로 전달하여 작은 모델의 성능을 개선하는 방식이다. 지식 증류 기법은 모델 경량화, 학습 속도 향상, 학습 정확도 향상 등에 활용될 수 있는데, 교사 모델이라 불리는 큰 모델은 일반적으로 학습된 딥러닝 모델을 사용한다. 본 연구에서는 학습된 딥러닝 모델 대신에 수치 기반 시뮬레이션 모델을 사용함으로써 어떠한 효과가 있는지 검증하였으며, 수치 모델을 활용한 기상 예측 모델에서의 지식 증류는 기존 단독 딥러닝 모델 학습 대비 더 작은 학습 횟수(epoch)에서도 동일한 에러 수준(RMSE)까지 도달하여, 학습 속도 측면에서 이득이 있음을 확인하였다.

A Theoretical Review on Knowledge Management and Its Model (지식경영과 그 모델에 관한 이론적 고찰)

  • 윤구호
    • Journal of Korean Library and Information Science Society
    • /
    • v.33 no.1
    • /
    • pp.169-192
    • /
    • 2002
  • Knowledge management(KM) is a concept that has emerged explosively in the business community as a major issue of the 1990s. In this paper, the background and definition of KM and some major issues such as central groups and themes dominating the field of KM are outlined In brief. In particular, a descriptive model is proposed integrating explicit knowledge, tacit knowlegde and the infrastructure, and its key characteristics are examined in detail. Also a few methods to build efficient KM systems(KMS) as well as some conventional practices in KMS, and the librarian's role in KMS realization are briefly introduced.

  • PDF

A Study on Knowledge Management for Korea Government (한국 행정의 특성 및 행정에서의 지식관리에 대한 연구)

  • 김승윤;전찬흔;이재범
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.441-444
    • /
    • 2000
  • 본 연구에서는 분류된 5가지 행정모델을 이용하여 현재 국내 행정모델의 특성을 추출하고, 아울러 행정모델의 전환에 대하여 논의하게 되며, 이를 통하여 한국 행정은 기계적 행정모델에서 네트워크 행정모델로의 이행 시점에 있음을 밝히고자 한다. 네트워크 행정모델 하에서는 지식, 정보, 자료, 멀티미디어 등을 통합한 개념인 Contents가 다양하게 공유되는데, 이 중에서 공유 및 활용의 효과가 가장 큰 것이 지식이다. 네트워크 정부모델 하에서는 지식의 의존도가 그만큼 높아지게 된다. 따라서 지식을 효율적으로 이용하기 위한 방안으로 Knowledge Portal 개념을 도입하여 행정지식을 사용자 관점에서 분류하고, 이를 통하여 Personalization 전략과 Codification 전략의 상호 보완적인 활용이 가능함을 제시한다. 아울러 지식 기반 행정의 구축을 위해서는 제도의 변화가 필요하며, 이러한 제도 중 성과측정 분야를 집중적으로 논의하게 되며, 이를 위하여 Balanced Scorecard의 개념을 도입하여 행정대상, 행정주체, 예산, 학습의 균형적인 성과측정 방안에 대하여 논의하고자 한다.

  • PDF

Morphological Classification of Knowledge Map for Science and Technology and Development of Knowledge Map Examples in the View of Information Analysis (과학기술 지식맵의 형태적 분류와 정보분석 관점의 지식맵 사례 도출)

  • Lee, Bangrae;Lee, June Young;Kim, Dohyun;Noh, Kyung Ran;Yang, Myung Seok;Kwon, Oh-Jin;Choi, Kwang-Nam;Kim, Han-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.461-476
    • /
    • 2013
  • Knowledge maps for science and technology are used extensively in the research projects. However, they are not organized systematically and are not necessarily suitable to be used in the research projects. Therefore, this study aims to organize the knowledge maps in order to support scientific research projects. To this end, the existing knowledge maps for science and technology are classified as one of four types based on data representation methods; the frequency summary map, trend summary map, distribution-based knowledge map and network-based knowledge map. Additionally, by summarizing and classifying the knowledge maps through the principle of 'five w's and one h', the unexplored area are investigated. Finally, some examples of useful knowledge maps in terms of data analysis are provided with details such as definitions, components and utilization purposes. These findings may be a starting point for future research into a better understanding of knowledge maps for science and technology.

'Collective intelligence Structure' Analysis (지식 생산 방식에 따른 집단지성 구조 분석 -네이버 지식IN과 위키피디아를 중심으로-)

  • Han, Chang-Jin
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1363-1373
    • /
    • 2009
  • 본 연구는 두 집단지성의 가장 대표적인 서비스인 네이버 지식iN과 위키피디아의 구조적, 경험적 차이를 바탕으로 생산의 차원에서 생산 주기, 생산 참여자, 생산물의 모델을 설정하고, 새롭게 탄생하는 지식을 중심으로 검증함으로써 최종 지식 소비 행위를 반영한 각각의 종합모델을 도출하였다. 우리는 웹에서 집단지성의 일상화를 확인할 수 있다. 지식 획득 매체가 매스미디어에서 인터넷으로 변화하는 과정에서 등장한 포털 및 검색사이트는 지식의 생산이 전문가패러다임에서 소비자 중심으로 재편될 수 있는 가능성을 열어주었다. 그리고 이러한 생산 방식의 변화는 '지식'의 개념 역시 변화시키고 있다. 즉, 집단지성이라는 새로운 웹2.0의 현상이 지식생산방식을 변화시키고 변화된 지식생산방식은 '지식'자체를 변화시킨다는 이론적 가설을 도출할 수 있는 것이다. 본 연구는 이러한 새로운 현상들을 분석하기 위해서는 먼저 보다 엄밀하게 집단지성의 개념을 규정할 필요성에 출발하였다. 현재 집단지성이라는 이름으로 불리면서 급격히 성장하고 있는 위키 방식의 인터넷 서비스와 지식검색 방식의 인터넷 서비스를 비교함으로써 보다 정교한 집단지성의 모델을 구축하고자 하였다. 위키형 집단지성과 지식검색형 집단지성의 차이점은 경험적으로도 뚜렷하게 확인할 수 있다. 본 연구는 이러한 경험적 차이와 기존의 문헌에서 밝혀진 사실들을 바탕으로 두 서비스의 지식생산 방식을 생산플로우, 생산참여자 성향, 생산물(지식)의 성향과 같이 세 영역으로 나누어 각각의 가설 모델을 설정하고 이 모델을 선정된 질의어를 바탕으로 검증한 뒤에 최종적인 모델을 도출하는 방식으로 진행되었다. 지식검색형 집단지성은 '질문-답변-채택'의 구조이고, 그 구조 속에서 '질문기-답변기-순서화기'를 거쳐 하나의 지식 덩어리인 'K-let'을 생산한다. 생산된 'K-let'들은 지식검색서비스의 데이터베이스에 축적되고, 이는 공통된 질의어를 기준으로 소비자들에 의해서 검색되어 소비된다. 하나의 질문에 대해 여러 개의 답변들이 존재하고, 답변자의 성향은 크게 전문성과 체계성을 바탕으로 한 전문가형 답변자와 경험적이고 의견지향적인 대화형 답변자로 나눠진다. 다수의 네티즌들의 참여에 의해서 지식의 생산이 진행되므로 질문의 성향 역시 사실, 의견, 경험 등 다양한 스펙트럼을 가지는 모델로 설정하였다. 반면에 위키형 집단지성은 개방형 플랫폼을 바탕으로 한 백과사전의 형식이며, 이러한 형식 속에서 최초의 개념어 등록과 다수의 편집활동을 거치면서 완성되지 않는 하나의 아티클인 'W-let'을 생산한다. 이러한 'W-let'은 생성 초기에 소수에 의한 활발한 내용 입력 활동으로 어느 정도의 안정화를 거친 후에는 꾸준한 다수의 수정활동을 통해서 'W-let'의 생명력을 유지함으로써 지식의 실제적인 변화를 반영한다. 생산된 'W-let'들은 위키형 집단지성 서비스의 데이터베이스에 축적되고, 이것들은 내부링크를 통해서 모두 연결되어 있다. 백과사전 형식으로 하나의 개념어를 설명하는 하나의 아티클은 오로지 사실적인 지식들로만 구성되나 내부링크와 외부링크를 통해서 다양한 스펙트럼을 가지는 모델로 설정하였다. 위와 같이 설정된 모델을 바탕으로 공통된 질의어 및 개념어를 선정하여 각각의 서비스에 노출시켰다. 이를 통해서 얻어진 각 서비스의 데이터베이스에 축적된 모든 데이터들 중에서 일정한 기간을 기준으로 각각의 모델 검증에 필요한 데이터를 추출하여 분석하는 방식으로 진행되었다. 그 결과 지식검색형 집단지성에서는 '질문-답변-채택'의 생산 구조 속에 다수가 참여하여 질문-채택답변-기타답변으로 배열되어 있는 완성된 형태의 K-let들을 지속적으로 생산하며 비슷한 성향을 가진 K-let들이 반복적으로 생산되어 지식검색 데이터베이스에 누적된다. 지식 소비자들은 질의어 검색을 통해서 다양한 K-let들을 선택하여 비교, 검토한 후에 선택된 K-let들의 배열은 해체되어 소비자들에 의해서 재배열됨을 발견할 수 있었다. 이에 지식검색형 집단지성이란 다수의 의해서 생산되고 누적된 지식들이 소비자의 검색과 선택에 의해 해체되어 재배열되는 지식의 맞춤화 과정이라고 정의내릴 수 있었다. 반면에 위키형 집단지성에서는 '내용입력-미세수정' 구조 속에서 생명력 있는 W-let을 생성한다. W-let은 백과사전처럼 정리되어 내부링크를 통해서 서로 연결되고, 외부링크를 통해 확장되고, 지식소비자들은 검색을 통해 최초의 W-let에 도달한 후에 링크를 선택함으로써 지식을 확장시킴을 검증할 수 있었다. 따라서 위키형 집단지성이란 다수의 의해서 생산되고 정리된 지식들이 소비자의 검색과 링크에 의해 무한히 확장되는 지식의 확대 재생산되는 과정이라고 정의 내릴 수 있다. 결국, 현재의 집단지성이란 지식이 다수의 참여로 생산됨으로써 개인에게 맞춤화되고, 끊임없이 확대 재생산되는 과정을 의미한다. 그리고 이러한 집단지성의 방식은 지식이라는 현재의 차원을 넘어서 정치, 경제를 비롯한 사회의 전 영역으로 점차적으로 확대되어갈 것이다. 앞으로 연구들은 두 가지 모델이 혼재되어 있는 현재의 집단지성이 어떠한 새로운 모델을 만들면서 다른 영역으로 확장되어갈 것인지에 대해서 초점을 맞춰 나가야할 것이다.

  • PDF

A study on integration of semantic topic based Knowledge model (의미적 토픽 기반 지식모델의 통합에 관한 연구)

  • Chun, Seung-Su;Lee, Sang-Jin;Bae, Sang-Tea
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.181-183
    • /
    • 2012
  • 최근 자연어 및 정형언어 처리, 인공지능 알고리즘 등을 활용한 효율적인 의미 기반 지식모델의 생성과 분석 방법이 제시되고 있다. 이러한 의미 기반 지식모델은 효율적 의사결정트리(Decision Making Tree)와 특정 상황에 대한 체계적인 문제해결(Problem Solving) 경로 분석에 활용된다. 특히 다양한 복잡계 및 사회 연계망 분석에 있어 정적 지표 생성과 회귀 분석, 행위적 모델을 통한 추이분석, 거시예측을 지원하는 모의실험(Simulation) 모형의 기반이 된다. 본 연구에서는 이러한 의미 기반 지식모델을 통합에 있어 텍스트 마이닝을 통해 도출된 토픽(Topic) 모델 간 통합 방법과 정형적 알고리즘을 제시한다. 이를 위해 먼저, 텍스트 마이닝을 통해 도출되는 키워드 맵을 동치적 지식맵으로 변환하고 이를 의미적 지식모델로 통합하는 방법을 설명한다. 또한 키워드 맵으로부터 유의미한 토픽 맵을 투영하는 방법과 의미적 동치 모델을 유도하는 알고리즘을 제안한다. 통합된 의미 기반 지식모델은 토픽 간의 구조적 규칙과 정도 중심성, 근접 중심성, 매개 중심성 등 관계적 의미분석이 가능하며 대규모 비정형 문서의 의미 분석과 활용에 실질적인 기반 연구가 될 수 있다.

패턴인식을 위한 신경망-지식기반융합모델-IPP(Intelligent Processing of Pattern) 모델

  • Lee, Gwang-Ro;Jang, Myeong-Uk;Park, Chi-Hang;Lee, Hun-Bok
    • ETRI Journal
    • /
    • v.14 no.4
    • /
    • pp.125-136
    • /
    • 1992
  • 일반적으로 사람이 패턴인식을 하는 데 있어서 여러 단계의 과정을 거쳐 인식함이 알려져 있다. 이와 같은 사람의 패턴인식 메카니즘(mechanism)을 모방하여 각 단계에 해당하는 기능을 수행하는 시스팀의 구성은 계층구조를 가짐은 물론 각각의 계층의 지식 또한 모듈화 되어야 한다. 특히 계층간의 지식이 상호작용을 통하여 지식이 처리되어야 할 것이다. 본 연구에서는 기존의 패턴인식 모델이 가지고 있는 문제점을 해결하기 위하여 인간의 패턴 인식 메카니즘에 대해 많이 알려진 여러가지 가설을 바탕으로 신경망 패턴인식 모델과 AI 패턴인식 모델을 융합한 새로운 IPP 모델을 제안한다. IPP 모델은 패턴을 인식할때 각 단계에서 생기는 다양성, 애매성 등을 다른 층의 지식을 사용하여 협조적으로 해결하며, 또한 인간처럼 직감적 처리와 논리적 처리를 상호협조적으로 정보를 교환하여 패턴을 인식한다. 즉, IPP 모델은 직감과 논리를 융합한 새로운 패턴인식 모델이다.

  • PDF

Development of Learning Model for Knowledge Management in Construction Area (건설분야의 지식관리 적용을 위한 학습모델 개발)

  • Jung In-Su;Kim Byung-Kon;Na Hei-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.3 no.1 s.9
    • /
    • pp.65-73
    • /
    • 2002
  • By its nature, software part of the construction industry such as engineering and so forth has been kept secret to outside, as it determines a company$^{\circ}{\phi}s$ competitiveness. As a result, construction field knowledge usually disappears with the end of a project. The objective of this study is to develop the knowledge management (BM) learning model tuned in to construction area in order to manage project-related knowledge and promote the knowledge management. This study presented a learning model for knowledge management in the construction field, with the aim to integrate a series of processes. The model is composed of EIP, EDMS, knowledge and failure cases management, CoP and e-Learning.

Entity aspect-relationship model for knowlege representation (지식표현을 위한 객체 측면-관계성 모델)

  • 김일도;박도순;황종선
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.285-292
    • /
    • 1991
  • 객체-관계성(ER:entity-relationship)모델을 이용한 지식표현모델은 실세계를 객체(entity)들 또는 객체들의 집합들 사이의 서로간에 관계성(relationship)으로 나타낸다. 그러나 고정된 측면에서 표현되기 때문에 하나의 객체를 여러가지 측면에서 관찰할 수 없다. 반면 객체-측면(EA:entity-aspect)모델은 객체노드와 측면노드의 두가지 형을 갖는 노드들로 구성되어 측면에 따라 서로 다른 지식을 표현 할 수 있으므로 하나의 객체를 여러가지 측면에서 관찰할 수 있고, 그 세부적 계층구조를 나타낼 수 있는 장점이 있으나 너무 계층성을 강조하며, 객체간의 관계성을 나타낼 수가 없어 계층구조 속에 포함되지 않은 객체는 지식으로 표현 할 수 없어 실세계의 다양한 지식을 표현하는데 부자연스럽다. 따라서 본 논문에서는 객체-관계성(ER)모델의 관계성과 객체-측면(EA)모델의 측면성을 통합하여 객체 측면-관계성(EAR)모델을 제시하고, 이 모델에서 객체간의 관계성을 하나의 객체로 간주함으로 IS-A측면에 의하여 하위레벨로 계승할 수 있음을 보였다.

  • PDF