본 연구에서는 학습데이터의 빈도요소를 반영하도록 수정된 구조의 FMM 신경망을 소개하고, 이로부터 패턴 분류를 위한 지식 표현을 생성하는 방법론을 제안한다. 하이퍼박스 멤버쉽함수는 5종류의 퍼지 분할을 기반으로 설정한 구간에 대하여 소속정도를 반영하여 결정하며, 각 차원별로 특징범위의 폭과 빈도 요소로부터 가중치 값이 학습된다. 본 연구에서는 제안된 이론을 수화인식 문제를 대상으로 고찰하였다. 인식 시스템의 구성은 특징추출을 위하여 3차원으로 확장된 구조의 CNN 모델을 사용하였으며, 수화패턴 데이터의 표현은 모션 히스토리 볼륨(Motion History Volume) 구조를 기반으로 하였다. 6종류의 수화패턴 동영상으로부터 27개 특징요소를 추출하고 이를 사용한 FMM 신경망의 학습과정과 지식의 추출 과정을 실험으로 보이고 그 유용성을 고찰한다.
Annual Conference on Human and Language Technology
/
1999.10d
/
pp.173-178
/
1999
본 논문의 명사추출기는 정보검색시스템을 위한 색인어 추출기로 좌우접속정보를 이용한 형태소해석을 통하여 얻어진 형태소들 중에서 명사를 추출한다. 본 형태소해석기는 형태소해석을 위한 언어지식과 어절 분리 엔진을 분리하여 수정과 확장이 용이하게 하였다. 사용한 언어지식은 좌우접속정보로서 한 어절을 이루는 형태소들의 품사간의 접속여부를 행렬로 표현한 것이다. 어절 분리 엔진은 사전을 참조하여 한 어절에서 최장일치법에 의해 형태소를 분리하고 좌우접속정보를 참조하여 형태소 분리가 올바른지를 판단한다. 형태소들의 품사분류는 표준 태그셋을 기반으로 음절 정보를 추가하여 확장하였다. 형태소를 해석한 결과 미등록어가 발생하였을 때 미등록어에서 명사를 추정하는 모듈이 없기 때문에 재현율은 좋지 않았다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.609-614
/
2023
최근 인공지능 시스템이 발전함에 따라 사람보다 높은 성능을 보이고 있다. 또한 전문 지식에 특화된 분야(질병 진단, 법률, 교육 등)에도 적용되고 있지만 이러한 전문 지식 분야는 정확한 판단이 중요하다. 이로 인해 인공지능 모델의 결정에 대한 근거나 해석의 중요성이 대두되었다. 이를 위해 설명 가능한 인공지능 연구인 XAI가 발전하게 되었다. 이에 착안해 본 논문에서는 기계독해 프레임워크에 순환 신경망 디코더를 활용하여 정답 뿐만 아니라 예측에 대한 근거를 추출하고자 한다. 실험 결과, 모델의 예측 답변이 근거 문장 내 등장하는지에 대한 실험과 분석을 수행하였다. 이를 통해 모델이 추론 과정에서 예측 근거 문장을 기반으로 정답을 추론한다는 것을 확인할 수 있었다.
Park, Seong-Hyun;Kim, Jae-Woong;Kim, Dong-Hyun;Cho, Han-Jin
Journal of the Korea Convergence Society
/
v.10
no.8
/
pp.15-20
/
2019
Music therapy has shown many benefits in the treatment of disabled children and the mind. Today's music therapy system is a situation where no specific treatment system has been built. In order for the music therapist to make an accurate treatment, various music therapy cases and treatment history data must be analyzed. Although the most appropriate treatment is given to the client or patient, in reality a number of difficulties are followed due to several factors. In this paper, we propose a music therapy knowledge management model which convergence the existing therapy data and text mining technology. By using the proposed model, similar cases can be searched and accurate and effective treatment can be made for the patient or the client based on specific and reliable data related to the patient. This can be expected to bring out the original purpose of the music therapy and its effect to the maximum, and is expected to be useful for treating more patients.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.109-110
/
2023
본 논문에서는 교육현장에서 서술평평가를 자동화하기 위한 시스템을 제안한다. 제안 시스템은 장문의 응답에서 단어를 추출하여 단어 간 네트워크를 생성하고 정답 네트워크와 비교를 통해 평가를 실시한다. 기존의 키워드 방식은 네트워크 관점에서 노드를 기준으로 채점하는 것이라면, 제안 시스템은 엣지를 기준으로 채점하게 되어 학습자의 답변에서 지식의 관계성을 채점할 수 있어 학습자에게 유용한 피드백을 줄 수 있을 것으로 기대한다.
Annual Conference on Human and Language Technology
/
2007.10a
/
pp.128-133
/
2007
Focused crawling은 검색시스템의 구축을 위한 웹 문서 수집단계에서, 미리 정의된 토픽 집합들과 관련성을 가지는 웹 문서를 수집하기 위하여 제안되었다. 이러한 focused crawling 연구에서 보다 효과적인 웹 문서 수집을 위해 주어진 토픽에 대한 양질의 배경지식을 제공할 수 있도록 온톨로지가 활발히 활용되어왔다. 그러나 기존의 온톨로지 기반 focused crawling 연구는 토픽과 웹 문서 간의 관련성 측정을 위하여, 주어진 토픽과 관련있는 온톨로지 내 각 개념들에 직관에 의존한 가중치를 부여하여 활용하였다. 하지만 이러한 직관에 의존한 가중치부여 기법은 안정된 수집결과를 도출할 수 있는 최적화된 가중치 값을 얻기가 힘든 한계가 있다. 따라서 본 논문에서는 이러한 개념에 대한 가중치가 학습에 의하여 자동으로 결정되도록, 인공신경망을 적용한 온톨로지 기반 focused crawling 기법을 제안한다. 웹 상에서 제안된 시스템의 성능을 실험한 결과 기존의 온톨로지 기반 수집 기법에 비하여 보다 향상된 결과를 보임을 알 수 있었다.
Kim, Hyeon-Jin;Oh, Hyo-Jung;Wang, Ji-Hyun;Lee, Chung-Hee;Jang, Myung-Gil
Annual Conference on Human and Language Technology
/
2004.10d
/
pp.275-282
/
2004
본 논문은 3단계 정답 추출 방법을 통해 백과사전 인물분야 질의응답 시스템을 구현하는 방법을 제안한다. 논문에서 제안한 3단계 정답 추출 방법은 1) 백과사전 문서 내에서 정형화 될 수 있는 지식들을 추출한 백과사전 KB 기반 정답 추출 방법, 2) 문장을 언어분석 하여 LF(Logical Form)구조를 추출하여 색인한 LF 기반 정답추출 방법, 3) 각 문장을 주제 태깅을 하여, 주제별로 묶어 의미적 단락으로 구분하고 단락 검색을 기반으로 정답을 추정하는 의미적 단락 기반 정답 추출 방법으로 구성되어 있다. 이러한 방법론은 백과사전이라는 문서 도메인의 특성을 반영하고. 사용자 질문의 난이도 또는 형태에 따라서 정답을 제공할 수 있는 백과사전 인물분야 질의응답 시스템에 적합하다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.548-553
/
2021
비디오 질의 응답은 입력으로 주어진 비디오와 질문에 적절할 정답을 제공하기 위해 텍스트, 이미지 등 다양한 정보처리가 요구되는 대표적인 multi-modal 문제이다. 질의 응답 시스템은 질의 응답의 성능을 높이기 위해 다수의 서로 다른 응답 모듈을 사용하기도 하며 생성된 정답 후보군 중 가장 적절할 정답을 선택하는 정답 선택 모듈이 필요하다. 정답 선택 모듈은 응답 모듈의 서로 다른 관점을 고려하여 응답 선택을 선택할 필요성이 있다. 하지만 응답 모듈이 black-box 모델인 경우 정답 선택 모듈은 응답 모듈의 parameter와 예측 분포를 통해 지식을 전달 받기 어렵다. 그리고 학습 데이터셋은 응답 모듈이 학습에 사용했기 때문에 과적합 문제로 각 모듈의 관점을 학습하기엔 어려우며 학습 데이터셋 이외 비교적 적은 데이터셋으로 학습해야 하는 문제점이 있다. 본 논문에서는 정답 선택 성능을 높이기 위해 전이 학습 기반의 멀티모달 퓨전 정답 선택 모델을 제안한다. DramaQA 데이터셋을 통해 성능을 측정하여 제안된 모델의 우수성을 실험적으로 증명하였다.
In the defense software domain where large-scale software products in various application areas need to be built, reusing software is regarded as one of the important practices to build software products efficiently and economically. There have been many efforts to apply various methods to support software reuse in the defense software domain. However, developers in the defense software domain still experience many difficulties and face obstacles in reusing software assets. In this paper, we analyze practical problems of software reuse in the defense software domain, and define core requirements to solve those problems. To meet these requirements, we are currently developing the Component Grid system, a reuse-support system that provides a developer-centric software reuse environment. We have designed an architecture of Component Grid, and defined essential elements of the architecture. We have also developed the core approaches for developing the Component Grid system: a semantic-tagging-based requirement tracing method, a reuse-knowledge representation model, a social-network-based asset search method, a web-based asset management environment, and a wiki-based collaborative and participative knowledge construction and refinement method. We expect that the Component Grid system will contribute to increase the reusability of software assets in the defense software domain by providing the environment that supports transparent and efficient sharing and reuse of software assets.
Proceedings of the Korea Society for Industrial Systems Conference
/
2001.05a
/
pp.165-183
/
2001
지난해부터 인터넷 분야에서 가장 확실한 수익 모델을 갖춘 사업 분야로 e-Learning 분야가 손꼽히면서 많은 온라인 교육 서비스가 우후죽순처럼 등장해 이미 1,000여 개의 서비스가 각축을 벌이고 있다. 그러나 e-Learning은 무엇보다도 학습용 컨텐츠의 품질이 그 성패를 좌우한다 할 때 한국의 온라인 학습 컨텐츠의 품질은 부실하기 이를 데 없다는 게 중론이다. 이는 S/W 공학에서 S/W 품질 보장을 위해 개발 방법론이 중요한 것으로 인식되는 것과 이를 지원하기 위한 Method II등 여러 도구들이 보급되고 있는데 비해 학습 컨텐츠는 그 중요도와 개발이 복잡하고 정교함이 요구됨에도 불구하고 개발 방법론에 대한 인식과 개발방법론을 지원하기 위한 도구가 없음에 기인하는바 크다 할 수 있겠다. 아직까지 국내에서는 MacroMedia Director나 ToolBook, Authorware등 일반적인 저작 도구나 웹 기반의 컨텐츠를 제작하는 Dreamweaver등의 HTML Editor만 있으면 컨텐츠가 만들어 질 수 있는 것으로 착각하고 있는 경우가 많다. 교육 학습용 컨텐츠의 개발 주기를 살펴보면 요구 분석->교수 설계->저작->평가->배포의 단계를 거치게 되는데 이때 학습 컨텐츠의 품질은 사실 요구 분석과 교수 설계 단계에서 결정되게 되며 이 학습 컨텐츠의 품질을 결정하는 단계에서는 IT 분야 지식보다는 오히려 교육 공학적 지식이 더욱 요구된다. 그러나 현실적으로 이 단계의 절차적 복잡성과 전문성으로 인해 거의 대부분의 학습 컨텐츠들이 제대로 개발 주기를 거치지 못하고 검증되지 않은 스토리 보드에 의한 저작 단계로 바로 돌입하고 있는 것이 한국의 실정이라 하겠다. 따라서 본 프로젝트에 의해 개발 된 교수 설계 도구는 교육/학습 컨텐츠의 품질 보증을 위한 방법론인 교육 공학의 체제적 교수 설계 이론 Model (Instructional System Design Model), 특히 그 중에서도 이 분야의 사실상의 표준 이론(de facto standard)인 Dick & Carey 교수와 Gagne 교수의 인지주의 ISD Model을 기반으로 정교한 교수 설계와 코스 맵 설계를 가능하게 함으로써 학습 컨텐츠의 품질 보증 활동을 지원 할 수 있는 도구로 개발하였다. 특히 Linux 기반에서 PHP로 개발 함으로써 Platform에 구애받지 않은 사용 환경을 구현 하였으며 향후 많은 e-Learning Platform에 교수 설계 모듈로 장착 함으로써 기존의 e-Learning Platform들의 가치를 높일 수 있는 계기가 될 것으로 생각한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.