• Title/Summary/Keyword: 지방전구세포

Search Result 130, Processing Time 0.043 seconds

Phenotype Changes in Immune Cell Activation in Obesity (비만 환경 내 면역세포 활성화 표현형의 변화)

  • Ju-Hwi Park;Ju-Ock Nam
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • Immune and metabolic systems are important factors in maintaining homeostasis. Immune response and metabolic regulation are highly associated, so, when the normal metabolism is disturbed, the immune response changed followed the metabolic diseases occur. Likewise, obesity is highly related to immune response. Obesity, which is caused by an imbalance in energy metabolism, is associated with metabolic diseases, such as insulin resistance, type 2 diabetes, fatty liver diseases, atherosclerosis and hypertension. As known, obesity is characterized in chronic low-grade inflammation. In obesity, the microenvironment of immune cells became inflammatory by the unique activation phenotypes of immune cells such as macrophage, natural killer cell, T cell. Also, the immune cells interact each other in cellular or cytokine mechanisms, which intensify the obesity-induced inflammatory response. This phenomenon suggests the possibility of regulating the activation of immune cells as a pharmacological therapeutic strategy for obesity in addition to the common pharmacological treatment of obesity which is aimed at inhibiting enzymes such as pancreatic lipase and α-amylase or inhibiting differentiation of preadipocytes. In this review, we summarize the activation phenotypes of macrophage, natural killer cell and T cell, and their aspects in obesity. We also summarize the pharmacological substances that alleviates obesity by regulating the activation of immune cells.

Ultrastructural Studies of Oogenesis and Oocyte Degeneration in Female Ruditapes philippinarum (Bivalvia: Veneridae) from Gomso Bay, Korea (곰소만에 서식하는 암컷 바지락 Ruditapes philippinarum의 난형성과정 및 난모세포 퇴화의 미세구조적 연구)

  • Lee, Ki-Young;Chung, Ee-Yung
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Ultrastructural changes occurring during the course of development and degeneration of oocytes in female Ruditapes philippinarum (Adams & Reeve, 1850) are described for clams collected from Gomso Bay, Korea. During the early stages of oogenesis, desomosome-like gap junctions localized between the early vitellogenic oocyte and the follicle cells. Vitellogenesis occurs through a process of autosynthesis, involving the combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum, and heterosynthesis in which extraovarian precursors are incorporated into oocytes by endocytotic activity, involving the basal region of the early vitellogenic oocytes prior to the formation of the vitelline envelope. The follicle cells appear to play an integral role in vitellogenesis and oocyte degeneration: phagocytosis and intracellular digestion of products originating from oocyte degeneration. These functions can permit a transfer of yolk precursors necessary to vitellogenesis, and they can accumulate nutrients in the cytoplasm, as glycogen and lipids, which can be employed by the vitellogenic oocyte. During the period of oocyte degeneration, follicle cells may have lysosomal system for breakdown, and resorb various phagosomes in the cytoplasm for nutrient storage. But follicle cells probably are not the major source of yolk precursors in vitellogenesis.

  • PDF

Inhibition of Adipocyte Differentiation and Adipogenesis by Aged Black Garlic Extracts in 3T3-L1 Preadipocytes (흑마늘 추출물에 의한 3T3-L1 지방전구세포의 분화 및 adipogenesis 억제에 관한 연구)

  • Park, Jung-Ae;Park, Cheol;Han, Min-Ho;Kim, Byung-Woo;Chung, Yoon-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.720-728
    • /
    • 2011
  • Garlic (Allium sativum) has been used as a source food as well as a traditional folk medicine ingredient since ancient times. Aged black garlic is a type of fermented garlic and is expected to have stronger anticancer and antioxidant activities than raw garlic. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis are poorly understood. In the present study, the effects and mechanisms of water extracts of raw garlic (WERG) and aged black garlic (WEABG) on adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes were investigated. Treatment with WEABG significantly suppressed terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner as confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining, however WERG had no such effect. In addition, WEABG reduced accumulation of cellular triglyceride, which is associated with a significant inhibition of key pro-adipogenic transcription factors including peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ (C/EBP${\alpha}$) and C/EBP${\beta}$. Taken together, these results provide important new insight that aged black garlic might inhibit adipogenesis by suppressing the pro-adipogenic transcription factors in 3T3-L1 preadipocytes, and further studies will be needed to identify the active compounds that confer the anti-obesity activity of aged black garlic.

Antiadipogenic Activity of Solvent-partitioned Fractions from Limonium tetragonum in 3T3-L1 Preadipocytes (갯질경이 용매분획물의 3T3-L1전지방세포에서의 지방생성억제 효과)

  • Kwon, Myeong Sook;Kim, Jung-Ae;Oh, Jung Hwan;Karadeniz, Fatih;Lee, Jung Im;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • Limonium tetragonum, an edible halophyte that grows on salt marshes in Korea, is thought to possess various health benefits (e.g., antioxidant, antitumor, and hepatoprotective). In the present study, different solvent partitioned subfractions, water ($H_2O$), buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and hexane (n-hexane), from crude extract of L. tetragonum were tested for their ability to prevent adipogenesis in differentiating 3T3-L1 preadipocytes. The treatment of differentiating 3T3-L1 preadipocytes with L. tetragonum subfractions (LTFs) resulted in suppressed adipogenesis and reduced expression of adipogenesis-related transcription factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), CCAATT/enhancer-binding protein alpha ($C/EBP{\alpha}$), and sterol regulatory element-binding protein 1c (SREBP-1c) at both mRNA and protein levels. In addition, the LTF treatment notably decreased the levels of phosphorylated p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) pathway in association with $PPAR{\gamma}$-linked adipogenesis. Among all the tested LTFs, $H_2O$ and n-hexane were the most effective in lowering lipid accumulation and regulating the adipocyte differentiation via $PPAR{\gamma}$ pathway. Taken together, the results indicated that the $H_2O$ and n-hexane LTFs contain bioactive compounds that may exhibit significant antiadipogenesis activity by downregulation of the $PPAR{\gamma}$ pathway and inactivation of the MAPK signal pathway in 3T3-L1 preadipocytes.

Anti-obesity effect of Auricularia spp. (목이버섯의 항비만 효과)

  • Park, Kun Hee;Kim, Kil-ja;Jang, Kab Yeul;Park, Kimoon
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2018
  • The purpose of this study is to discover a food material having anti-obesity effects and to disseminate information on the effects of the material to people who are interested in anti-obesity. For this study, 11 kinds of Auricularia (wood ear) spp., including 8 strains of Auricularia auricula-polytricha, and 3 strains of A. auricula-judae, were presented by the Jeollanamdo Agricultural Research & Extension Services. 3T3-L1 (preadipocyte cell) was used for identifying the inhibition effect on adipocyte differentiation. As a result, this study found that all the extracts had slightly different degrees of inhibition effects on adipocyte differentiation. Among the A. auricula-polytricha strains, strain 21001 showed the most significant effect (4.58%), and the inhibition effect of strain 21002 (4.43%) was the greatest among A. auricula-judae strains. Overall, the inhibition effect of A. auricula-polytricha strains was greater than that of A. auricula-judae strains. The results of mRNA and protein analysis also demonstrated that the inhibition effect of A. auricula-polytricha 21001 was superior to that of any other strains. An in vivo study using 56 ICR mice (6w, male), was performed for 4 weeks. A. auricula-polytricha 21001, which exhibited the most significant effect in the in vitro study was used to compose six different types of feeds. Daily body weight gain of the high-fat diet containing 0.2% 21001 extract feeding group was $0.22{\pm}0.08g$ (*p < 0.05), and it was 31.25% lower than that of the high-fat diet feeding group ($0.32{\pm}0.06$). Internal organ weight measurement and blood analysis were performed immediately after animal sacrifice. The results proved that treatment with more than 0.1% of A. auricula-polytricha strain 21001 could significantly reduce (more than *p < 0.05) the weight of liver and epididymal fat, and levels of glucose, total cholesterol, AST, and ALT in blood.

Effects of Ethanol Extract of Sargassum horneri on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (괭생이모자반 에탄올 추출물이 3T3-L1 지방전구세포의 분화 및 adipogenesis에 미치는 영향)

  • Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.209-214
    • /
    • 2019
  • Sargassum horneri (Turner) C. Agardh is a marine brown algae widely distributed in the North Pacific Ocean. It is known for its anti-inflammatory and anti-atopic effects. In this study, we determined the effects of ethanol extract of Sargassum horneri (Turner) C. Agardh (EESH) on anti-obesity activities in 3T3-L1 preadipocytes. Our results indicated that treatment with EESH decreased the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet content observed by oil red O staining. The concentrations of cellular triglycerides were also reduced in 3T3-L1 cells after treatment with EESH. Triglyceride content was inhibited by 13%, 16%, and 23% after treatment with 250, 500, and $1,000{\mu}g/ml$ of EESH in 3T3-L1 cells, respectively. Western blotting analysis showed that EESH suppressed adipogenic transcription factor expression in a dose dependent manner. Specifically, it suppressed cytidine-cytidine-adinosine-adenosine-thymidine (CCAAT) /enhancer binding proteins $(C/EBP){\alpha}$, $C/EBP{\beta}$ and peroxisome proliferator-activated receptor $(PPAR){\gamma}$. This indicated that EESH could control the expression of adipogenic transcription factors and inhibit the differentiation of adipocytes. Taken together, these findings demonstrated that EESH showed anti-obesity effects and could have potential uses in the field of nutraceuticals.

Ethanol Extract of Hermetia illucens Larvae Inhibits Adipogenesis in 3T3-L1 Adipocytes (동애등에 유충 에탄올 추출물의 지방세포 분화 억제 효과)

  • Park, Ji Yeong;Kwak, Kyu-Won;Choi, Ji-Yeon;Lee, Si-Eun;Kim, Yong-Soon;Koo, Bonwoo;Kim, Eunsun;Park, Kwanho;Kim, Sun Young
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1094-1099
    • /
    • 2021
  • Hermetia illucens (Black soldier fly) is attracting attention as an environmental purification insect because it can supply a wide range of by-products of the agricultural food industry. Also, it has a potential feed for fish, birds, and pets due to a short life cycle and excellent nutritional components. Several pharmacological effects, including antimicrobial, of H. illucens have been reported. However, no study has focused on antiobesity effects of ethanol extract of H. illucens. In this study, we aimed to assess the anti-obesity effects of ethanol extract of H. illucens larvae (HIE) through inhibition of differentiation of 3T3-L1 preadipocytes into adipocytes. The amount of lipid accumulated in adipocytes was measured by oil red-O staining, and the inhibitory effect on adipogenesis was confirmed. The expression levels of factors related to adipocyte differentiation and fat synthesis were determined using Western blot analysis. Lipid droplet formation in adipocytes was remarkably inhibited by HIE. In addition, treatment with 400 ㎍/ml of HIE significantly reduced the expression levels of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α-transcription factors involved in adipocyte differentiation. Therefore, the results of this study indicate that HIE is a potential anti-obesity agent because it inhibits adipocyte differentiation.

Anti-adipogenic Effect of Fermented Coffee with Monascus ruber Mycelium by Solid-State Culture of Green Coffee Beans (3T3-L1 지방전구세포에서 홍국균 균사체-고체발효 원두커피 추출물의 지방축적 억제효과)

  • Lim, Yongrae;Shin, Ji-Young;Kim, Hoon;Baek, Gil-Hun;Yu, Kwang-Won;Jeong, Heon-Sang;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.624-629
    • /
    • 2014
  • Obesity is the leading metabolic disease in industrialized countries and is closely associated with coronary heart disease, hypertension, diabetes, and cancer. The objective of this study was to evaluate the anti-adipogenic effects of two roasted coffee beans, Vietnam robusta (VR) and Ethiopia Mocha Sidamo G2 (ES), as well as fermented coffee beans with Monascus ruber (MR) mycelium on differentiation of 3T3-L1 preadipocytes. Treatments with 1,000 ${\mu}g/mL$ of hot water extract from coffee beans significantly reduced intracellular lipid accumulation. In addition, VR more effectively inhibited transcription factors such as $PPAR{\gamma}$, $C/EBP{\alpha}$, FAS, and aP2 compared to ES. Further, ES fermented with MR showed more effective anti-adipogenic activity than non-fermented ES. These results suggest that VR and ES inhibit adipocyte differentiation which may contribute to their anti-adipogenic properties.

Ethanol Extracts of Mori Folium Inhibit Adipogenesis Through Activation of AMPK Signaling Pathway in 3T3-L1 Preadipocytes (3T3-L1 세포에서 상엽이 유발하는 AMPK signaling pathway를 통한 adipogenesis 억제에 관한 연구)

  • Ji, Seon Young;Jeon, Keong Yoon;Jeong, Jin Woo;Hong, Su Hyun;Huh, Man Kyu;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.155-163
    • /
    • 2017
  • Mori Folium, the leaf of Morus alba, is a traditional medicinal herb that shows various pharmacological activities such as antiinflammatory, antidiabetic, antimelanogenesis, antioxidant, antibacterial, antiallergic, and immunomodulatory activities. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis remain poorly understood. In the present study, we investigated the inhibition of adipocyte differentiation and adipogenesis by ethanol extracts of Mori Folium (EEMF) in 3T3-L1 preadipocytes. Treatment with EEMF suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in the lipid droplet number and lipid content through Oil Red O staining. EEMF significantly reduced the accumulation of cellular triglyceride, which is associated with a significant inhibition of pro-adipogenic transcription factors, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), and CCAAT/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) and ${\beta}$ ($C/EBP{\beta}$). In addition, EEMF potentially downregulated the expression of adipocyte-specific genes, including adipocyte fatty acid binding protein (aP2) and leptin. Furthermore, EEMF treatment effectively increased the phosphorylation of the AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase (ACC); however, treatment with a potent inhibitor of AMPK, compound C, significantly restored the EEMF-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results together indicate that EEMF has preeminent effects on the inhibition of adipogenesis through the AMPK signaling pathway, and further studies will be needed to identify the active compounds in Mori Folium.

Enzymatic Production and Adipocyte Differentiation Inhibition of Low-Molecular-Weight-Alginate (저분자 알긴산의 효소적 생산과 지방세포 분화 억제 효과)

  • Park, Mi-Ji;Kim, Yeon-Hee;Kim, Gun-Do;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1393-1398
    • /
    • 2015
  • In this study, we investigated the extraction condition of alginate from Laminaria japonica, the enzymatic degradation of the extracted alginate, and the inhibitory activity of the degraded alginate on the differentiation of 3T3-L1 preadipocytes. The optimal conditions for the efficient extraction, precipitation, and recovery of alginate from the brown seaweed L. japonica were 1% for Na2CO3 concentration, 80℃ for extraction temperature, and ethanol for precipitation solvent. In the enzymatic reaction for the production of low-molecular-weight alginate (LMWA) by using alginate lyase from Flavobacterium sp., the initial concentration of Laminaria alginate was 3%. The low-molecular-weight degree from alginate was independent with the enzyme concentration, and the optimal concentration of alginate lyase was found to be 5 unit/ml. Through the enzymatic reaction with 5 unit/ml of alginate lyase at 37℃ for 3 hr, the viscosity and molecular weight of LMWA were 4.5 cp and 307 kDa, respectively. Treatment with LMWA significantly suppressed the accumulation of lipid droplet and triglyceride in 3T3-L1 preadipocytes with a dose-dependent manner. Therefore, it seems that LMWA treatment could inhibit the differentiation of 3T3-L1 preadipocytes. These results indicate that LMWA or the degraded alginate produced by alginate lyase enzyme can be useful for the development of anti-obesity biosubstances.