• Title/Summary/Keyword: 지반 다짐

Search Result 560, Processing Time 0.025 seconds

Shear Wave Velocity Estimation of Railway Roadbed Using Dynamic Cone Penetration Index (동적 콘 관입지수를 이용한 철도노반의 전단파속도 추정)

  • Hong, Won-Taek;Byun, Yong-Hoon;Choi, Chan Yong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.25-31
    • /
    • 2015
  • Elastic behavior of the railway roadbed which supports the repeating dynamic loads of the train is mainly affected by the shear modulus of the upper roadbed. Therefore, shear wave velocity estimation of the uniformly compacted roadbed can be used to estimate the elastic behavior of the railway roadbed. The objective of this study is to suggest the relationship between the dynamic cone penetration index (DCPI) and the shear wave velocity ($V_s$) of the upper roadbed in order to estimate the shear wave velocity by using the dynamic cone penetration test (DCPT). To ensure the reliability of the relationship, the dynamic cone penetration test and the measurement of the shear wave velocity are conducted on the constructed upper roadbed. As a method for measurement of the shear wave velocity, cross hole is used and then the dynamic cone penetration test is performed at a center point between the source and the receiver of the cross hole. As a result of the correlation of the dynamic cone penetration index and the shear wave velocity at the same depths, the shear wave velocity is estimated as a form of involution of the dynamic cone penetration index with a determinant coefficient above 0.8. The result of this study can be used to estimate both the shear wave velocity and the strength of the railway roadbed using the dynamic cone penetrometer.

Numerical Studies for the Safety Estimation of Box-Culvert in Levee (수치해석을 이용한 하천제방 배수통문의 안정성 평가 연구)

  • Kim Jin-Man;Choi Bong-Hyuck;Oh Se-Yong;Kim Kyung-Min
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.479-486
    • /
    • 2006
  • In this study, 2-D seepage analysis is conducted for the evaluation of Box-Culvert installation, Cut-off Wall Length, permeability reduction of soil under the Box-Culvert effects on Levee Box-Culvert safety. The result of analysis it is obtained that the safety of seepage and slope stability of levee is declined by the installation of Box-Culver. And also obtained that the piping from poor compaction and cavity around Box-Culvert Is Prevented by the Cut-off wall installation below breast wall and levee toe, so it is recommended that the Cut-off Wall below breast wall and levee toe must be installed. And the Cut-off Wall installed below levee center is considered when the safety of piping is declined for the whole levee section. On the other hand, for the realistic analysis it is recommended that the 3-D seepage analysis is more suitable for the safety evaluation of Box-Culvert installed levee when it is considered that the saturated field is dispersed to the ground.

Geotechnical Consideration on the Conservation of the Muryong Royal Tomb (무령왕릉의 보존을 위한 지반공학적 고찰)

  • Suh, Mancheol
    • Journal of Conservation Science
    • /
    • v.8 no.1 s.11
    • /
    • pp.40-50
    • /
    • 1999
  • A geotechnical research including observation of the movement of wall-structure, monitoring of groundwater, non-destructive geophysical investigation was conducted to workout a countermeasure to conserve the Muryong Royal Tomb which is the most extinguishable cultural property of the Baekje dynasty. Movement of the structure of Muryong Royal Tomb generally arises to the front chamber and its amplitude in a rainy season is twice of that in the dry season. It represents serious problem concerned about structural safety of the royal tomb in the rainy season. Movement of wall-structure is caused due to the rain infiltration through cracks in the quicklime layer within the soil mound on the top of the royal tomb and the change of the temperature inside of the tomb. Cracks found around the Muryong Royal Tomb are mostly spread in NW and SE of the tomb structure and it harmonizes with the direction of movement of wall-structure of the Muryong Royal Tomb. Counter-plans for safety and prevention of water-leakage that obstruct the movement of wall structures towards the direction of south are very important for the conservation of Muryong Royal Tomb. After getting rid of the cause of structural change by the restoration of the front chamber of the Muryong Royal Tomb, it needs to reinforce the quicklime layer for prevention of waterleak.

  • PDF

An Experimental Study of the King Sejong Station and Siberian Frozen Soils (세종기지 및 시베리아 흙의 동결특성 시험)

  • Kim, Youngchin;Shin, Jaewon;Son, Seungmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.5-12
    • /
    • 2009
  • Soil samples from the King Sejong Station in Antarctic and Vladivostok were tested in the laboratory and specific gravity, compaction curve, grain size distribution were determined. The effect of temperature change on the thermal conductivity, unfrozen water content, compressive strength were investigated. In addition, the change of tensile strength with temperature of the soil from Vladivostok was measured. Samples for the compressive strength test and tensional strength test were prepared in a mould with a fixed volume to prevent swelling. Also the effects of temperature and water content change on those strength were compared. Results from the thermal conductivity test showed that thermal conductivity values for both soils was larger at temperatures below freezing than those above freezing. The unfrozen water content dropped rapidly within a temperature range of $0{\sim}-5^{\circ}C$ and then gradually decreased further $-20^{\circ}C$. Compressive strength test results showed various stress/deformation curves with a change in water content. Sandy soil of the King Sejong Station had a much larger strength than ice at an identical temperature, while clayey soil of Vladivostok had a smaller strength than ice in the initial stage, but showed a larger strength at temperatures belows $-15^{\circ}C$. Tensile strength tests revealed an increase in the strength with a decreasing temperature.

  • PDF

Comparison of Short-term Mechanical Characteristics of Fine-grained Soils Treated with Lime Kiln Dust and Lime (석회노분과 석회로 처리된 세립토의 단기적 역학특성 비교)

  • 김대현;사공명;이용희
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.75-83
    • /
    • 2004
  • The Indiana Department of Transportation (INDOT) has permitted the use of Lime Kiln Dust (LKD) as a low-cost construction material in creating a workable platform for soil modification (not for soil stabilization) since the early 1990s on selected projects. However, the enhanced strength of soils with LKD has not been accounted for in the subgrade stability calculations in the design process. This study was initiated to evaluate how the lime kiln dust is a comparable material to hydrated lime. A series of laboratory tests were performed to assess the mechanical benefits of lime kiln dust in combination with various predominant fine grained soils encountered in the State of Indiana, such as A-4, A-6 and A-7-6. In the course of this study, several tests such as the Atterberg limits, standard Proctor, unconfined compression, CBR, volume stability, and resilient modulus were performed. As a result, mixtures of fine grained soils with 5% lime or 5% LKD substantially improve unconfined compressive strength up to 60% - 400%. CBR values for treated soils are in the range of 25 to 70 while those for untreated soils range from 3 to 18. In general, significant increase in resilient moduli of the soils treated with lime and LKD was observed. This indicates that lime kiln dust may be a viable, cost effective alternative to hydrated lime in enhancing the strength of fine grained soils.

A Study on Recycling Plan for the Dehydrated Sludge of Water Treatment Plant (탈수 처리된 정수장 슬러지의 재활용 방안 연구)

  • Chung Youn-In;Chang Yong-Chai;Choi Byoung-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.107-113
    • /
    • 2006
  • Water treatment plant sludge occurred in sedimentation and inverse wash process is generally disposed by ocean dumping or reclamation after dehydration processing using mechanical or natural dry method. Recently, ocean dumping of sludge is limited actually by London Convention. Physical, chemical, and geotechnical characteristics of water treatment plant sludge were analyzed by experiments. The possibilities for recycling of the dehydration sludges as materials for covering sanitary landfill were examined. Experiments performed with sludges mixed with general soil to improved the sludge properties are the hydrometer analysis, the liquid and plastic limit test, the specific gravity test, the compaction test, and the unconfined compression test. The value of ${\gamma}_{dmax}$ is increased and OMC(Optimum Moisture Content) is lessened with mixed sludge. The value of maximum compressive strength and friction angle are increased and the cohesion is decreased with mixed sludge. The ratio between sludge and soil in mixed sludge was 3:7 and the strength of mixed sludge showed $3.6kg/cm^2$. These results satisfy the regulation of U.S. E.P.A regarding materials for covering sanitary landfill.

  • PDF

Study on Optimum Design for Embankment Construction on Soft Ground Treated by SCP (SCP개량지반상에 성토시공 시 최적설계에 관한 연구)

  • Chae, Jong-gil;Park, Yeong-Mog;Jung, MinSu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.251-258
    • /
    • 2009
  • In this study, the optimum design conditions for embankment construction on soft clay layer improved by soil compaction pile (SCP) are discussed by comparing the practical design method to the reliability design which is based on the loss function and advanced first order second moment (AFOSM) method. The results are summarized as follows; 1) the relationship between safety factor and failure probability becomes heavy exponentially, failure probability decreases rapidly till 1% approximately until safety factor is smaller than 1.2 and after then, failure probability decrease gradually along the increase of the safety factor. The design safety factor of 1.2 may be the critical value that has been established on considering both relationships appropriately, 2) the safety factor of 1.15 at the minimum expected total cost is a little smaller than the design safety factor of 1.2 and the failure probability is about 1%, 3) the sensitivities of the ratio of stress share and the internal friction angle of sand is larger than the variables related the undrained shear strength of soft layer. This result means that the distribution characteristic of n and ${\phi}$ influences on the stability analysis considerably and they should be considered necessarily on stability analysis of embankment on soft layer improved by SCP, 4) new failure points of the input variables at the design safety factor of 1.2(below failure probability of 0.1~0.3%) is far 1~2 times of standard deviation from the initial design values of themselves.

Physical and Chemical Properties of Waste Concrete Powders Originated from the Recycling Process of Waste Concrete (폐콘크리트의 재활용 공정에서 발생되는 폐콘크리트 미립분의 물리.화학적 특성)

  • Kim, Jin Man;Kang, Cheol;Kim, Ha Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.82-89
    • /
    • 2009
  • According to the great city development and the rapid growth of redevelopment project, waste concrete emission has been increased. Waste concrete powder is one of the by-product originated from the recycling of the waste concrete. The more making high quality recycled aggregate to use aggregate for concrete, the more waste concrete powder is producted relatively. Therefore, to realize the total recycling of waste concrete, development of recycling technology for waste concrete powder need very much. This technical note present the discharged process and the various properties of waste concrete powder. As the results, on the average, the maximum particle-size of waste concrete powder is less than $600{\mu}m$, and oven-dry density is less than $2.5g/cm^3$. And waste concrete powder contains more than 50% of $SiO_2$, 30% of CaO and 10% of $Al_2O_3$. Thus qualities of waste concrete powder is lower than those of high quality raw material for concrete. However, if it is processed by grading to the purpose, it will be used as resource of raw materials for construction field.

  • PDF

An Experimental Study on Bottom Ash for Utilization of Subbase Materials (저회의 성토재료 활용성에 대한 실험적 연구)

  • Jung, Sang-Hwa;Choe, Myong-Jin;Lee, Bong-Chun;Choi, Young-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.89-98
    • /
    • 2010
  • Recently, many researches on bottom ash which is produced in the burning process of power plant are actively performed for its utilization for soil-subbase materials. In this paper, bottom ashes from 5 different power plants are prepared and several tests including compaction, CBR, and tri-axial compression are carried out for mixed bottom ash and weathered soil considering 3 replacement ratio of 30%, 50%, and 70%. Through the tests, CBR result over 20 are evaluated without plastic property, which shows availability of subbase material. With higher increase in replacement ratio of bottom ash, CBR of mixed soil increases due to the higher mechanical performance of bottom ash. However, replacement effects of bottom ash on friction angle and cohesion are evaluated to be little since bottom ash plays a little role in rearrangement of mixed soil. Bottom ash with a good mechanical property is evaluated to have reasonable bearing capacity which shows a good property for subbase materials.

  • PDF

A study on the regulation of durability standard of underground structures monitoring sensors (지하구조물 계측센서의 내구연한 기준에 대한 규정 분석 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.73-81
    • /
    • 2018
  • The purpose of this study is to research the regulation of durability standard of underground structures monitoring sensors. The durability criteria for construction monitoring sensors of domestic construction companies, the standard years of contents such as buildings on the income tax implementation regulations, and the standards of the Public Procurement Service for construction monitoring and construction machinery were analyzed. The durability criterion on products such as the inclination meter and the strain gauge, which are purchased from the Public Procurement Service prior to installation on the underground structure, is 8 to 10 years. It is considered that the monitoring sensor installed in the paperboard and the concrete structure at the time of construction will have considerably shortened service life rather than the useful life of the product itself due to various adverse factors such as groundwater influence and compaction.