• Title/Summary/Keyword: 지반정수

Search Result 454, Processing Time 0.025 seconds

Determination of Composite Strength Parameter Using Elasto-Plastic Theory (탄소성이론을 이용한 복합지반의 대표 강도정수 예측)

  • 이주형;김영욱;박용원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.93-100
    • /
    • 2002
  • Vertical reinforcement of soft soils using the deep mixing method has received increasing applications. In this study, the theory of elasticity and plasticity including the upper bound theorem of limit analysis were used to derive the equations for obtaining composite elastic properties and shear strength parameters. The developed equations were validated using the finite element computer program SAGE CRISP. The analysis involved 4 different cases-two different type of soil and replacement ratios. Tile results of the analysis show that the proposed equations could determine the properties of composite material for practical applications.

  • PDF

A Study on Evaluation of Modulus of Horizontal Subgrade Reaction through Field Test and Numerical Analysis (현장시험과 수치해석을 통한 수평지반반력계수 산정에 관한 연구)

  • Kang, Byungyun;Park, Minchul;Lee, Sihyung;Jang, Kisoo;Koo, Jagap;Park, Kyunghan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.5-15
    • /
    • 2016
  • For achieving stability and economic construction at a retaining wall construction site, quantitative parameters of soil properties with excavation steps coincides with the actual field site. The main parameters of retaining wall design such as deformation modulus and modulus of horizontal subgrade reaction are common with N value of standard penetration test. Therefore, this study is compared and analyzed about the mutual relationship which is SPT, PBT and PMT for overcoming inconsistency of the existing retaining wall design generalized. In addition, modulus of horizontal subgrade reaction and reduction factor with excavation steps are proposed through back analysis of elasto-plasticity and finite element method with actual field monitoring data. Finally, it is purpose that parameter errors are reduced for applying effective retaining wall design at a construction small and medium-sized.

Partial Safety Factor of Offshore Wind Turbine Pile Foundation in West-South Mainland Sea (서남해안 해상풍력단지 말뚝기초의 부분안전계수)

  • Yoon, Gil Lim;Kim, Sun Bin;Kwon, O Soon;Yoo, Moo Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1489-1504
    • /
    • 2014
  • This paper is aimed to suggest a site specific partial safety factor of offshore wind turbine (OWT) pile foundation design for the offshore wind turbine complex at a West-South mainland sea in Korea. International offshore wind design standards such as IEC, GL, DNV, API, ISO and EUROCODE were compared with each partial safety factor and resistance factor. Soil uncertainty analysis using a large number of soil data sampled was carried out, and their results were adapted to estimate partial safety factor of OWT pile foundation through reliability analyses. The representative partial safety factor has been estimated as 1.3. When a proposed partial factor is willing to use to other sites, it is recommended that further studies on code calibration are required to validate their accuracy using more site characterization data.

A Study on the Self-Weight Consolidation Procedure of Very Soft Ground Reclaimed by Dredging Clayey Soil (연약한 준설 매립 점성토지반의 자중압밀 과정에 관한 연구)

  • 김형주;오근엽
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.129-138
    • /
    • 1999
  • This study is performed for the development of a field monitoring and test technique both of self-weight and hydraulic consolidation by which the soil parameters of dredge-reclaimed clay can be obtained effectively. The field monitoring development and tests mentioned above make it possible to reproduce the process of the self-weight consolidation from settling to reclaimed soft ground. The experimental research is mainly focussed on the characteristics of self-weight consolidation of dredged clayey soil. And theoretical study has pointed out the limits in the application of Terzaghi's one dimensional consolidation theory in interpreting reclaimed clayey ground. Furthermore, a finite difference analysis has been made on the basis of Mikasa s self-weight consolidation theory which takes the problems of Terzaghi's theory into consideration. The relationships between specific volume, effective stress, and the coefficient of permeability of Kunsan reclaimed clayey soil have been obtained by laboratory tests. On the other hand, through the field monitoring, pore pressure, total pressure, and water levels have been measured after pouring. The results of these experiments have been analyzed, and compared with those from Terzaghi's method and the finite difference analysis of Mikasa's self-weight consolidation theory. In conclusion, the measured settlements is comparatively consistent with Mikasa's self-weight consolidation theory rather than Terzaghi's consolidation theory.

  • PDF

Development of Fragility Curves for Seismic Stability Evaluation of Cut-slopes (지진에 대한 안전성 평가를 위한 깎기비탈면의 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.29-41
    • /
    • 2017
  • There are uncertainties about the seismic load caused by seismic waves, which cannot be predicted due to the characteristics of the earthquake occurrence. Therefore, it is necessary to consider these uncertainties by probabilistic analysis. In this paper, procedures to develop a fragility curve that is a representative method to evaluate the safety of a structure by stochastic analysis were proposed for cut slopes. Fragility curve that considers uncertainties of soil shear strength parameters was prepared by Monte Carlo Simulation using pseudo static analysis. The fragility curve considering the uncertainty of the input ground motion was developed by performing time-history seismic analysis using selected 30 real ground input motions and the Newmark type displacement evaluation analysis. Fragility curves are represented as the cumulative probability distribution function with lognormal distribution by using the maximum likelihood estimation method.

Effect of Ground Confine Pressure on Pullout Resistance of Piles Using Model Experiment (말뚝의 인발저항에 대한 지중 구속압 영향 분석을 위한 실내모형실험)

  • Seung-Kyong You;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • This paper describes the results of a pile pullout test considering the confine pressure and fines content of the ground. The Pullout tests were conducted under various ground conditions using model piles. The effect of ground confine pressure on the pullout resistance and the pullout resistance parameters of the pile were evaluated based on the experimental results. The results of pullout test showed that the maximum pullout resistance occurred at a pullout displacement of about 7mm to 9mm, regardless of the fines content and the confine pressure of the ground. The maximum pullout resistance of the pile decreased as the fines content of the ground increased, and this trend became clearer as the confine pressure increased. The pullout resistance calculated by theoretical formula was compared with the experimental results in order to ensure the reliability of the pullout test results. The comparative results showed that the experimental and theoretical values showed a tendency to decrease the pullout resistance as the fines content increased, in all confine pressure conditions. The analysis result of the pullout resistance parameters confirmed that the pullout resistance was greatly influenced by the adhesion compared to the interface friction angle, as the fines content of the ground around the pile increased.

Taeyoung Submerged-type Membrane Filtration for Advanced Drinking Water Treatment (태영 침지식 막여과 고도정수처리)

  • Yeon, Kyeongho;Cho, Jaebeom;Lee, Yunkyu;Kang, Hojung;Kim, Woogu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.15-27
    • /
    • 2013
  • In order to plan out the Daegu G membrane filtration water treatment plant, water quantity, water quality and process stability were evaluated using the field pilot-scale tests, during the six months of continuous operation, including low water temperature period. The field model experiments, which were carried out according to the Installation Criteria of Ministry of Environment, consisted of two series : series 1 - water quality verification, and series 2 - membrane process evaluation. The process water quality met all drinking water standards with less than 0.03 NTU. Moreover, process operation showed a stable membrane pressure with 99% of recovery ratio. This shows that the tests were properly designed in terms of the influence of water loading and temperature. In conclusion, the purpose of this study is to establish core technology for advanced drinking water treatment, through on-going accumulation of engineering and construction know-how.

Geotechnical Characteristics of Crude Oil-Contaminated Sandy Ground (원유로 오염된 지반의 역학적 특성)

  • 신은철;이재범
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper, the effects of crude oil contamination on the geotechnical properties of sand such as compaction characteristics, shear strength, permeability, and bearing capacity are presented. The test results indicate that the compaction characteristics are somewhat influenced by oil contamination. The angle of internal friction of sand based on total stress analysis decreases due to the presence of oil within the pore spaces in Band. The bearing capacity of sand is significantly influenced by oil contamination.

  • PDF

Study on the Strain-Rate Dependent Constitutive Equation using Elastoplastic-Viscoplastic Constitutive Model (Bounding Surface 모델을 이용한 변형율속도 의존적인 구성 관계식에 관한 연구)

  • Lee, Ki-Sun;Kim, Dae-Kyu;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.207-214
    • /
    • 2001
  • 응력-변형률 관계의 모델링에 있어서 creep, stress relaxation, strain rate effect 등의 묘사는 중요한 지반거동중의 하나인 시간 의존적 거동에 대한 simulation은 있어서 대단히 중요한 요소라 할 수 있다. 특히 지반은 변형률 속도에 대하여 때로는 매우 다른 거동 특성을 보이기 때문에 지반의 모델링에 있어서 변형율 속도를 고려한 구성방정식의 제시는 큰 비중을 차지한다 하겠다. 본 연구에서는 변형율에 따라 변화하는 지반의 거동특성을 보다 현실에 가갈게 묘사하기 위한 시간 의존적 구성모델을 제시하는데 있다. Bounding Surface Model의 Stress Invariant 부분을 Perzyna(1966)와 Adachi and Oka(1982)의 변형율 속도 의존적인 구성관계 이론을 이용하여 발전시켰다 제안된 구성모델은 다양한 변형율 속도에 적용에 있어서 기존의 방식보다 간단히 모델 정수들을 결정 할 수 있다. 지반거동의 수치적인 해석을 위하여 기존의 Bounding Surface Model에 사용되었던 Program Code를 발전 시켜 사용하였으며, 엄격히 시행된 실내시험의 결과와 비교/검증하였다.

  • PDF

Estimation of Shear Strength and Rheological Parameters of Fine-Grained Soil Using Direct Shear Test (직접전단실험을 이용한 세립토의 전단강도 및 유변학적 정수 산정)

  • Park, Geun-Woo;Hong, Won-Taek;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.29-37
    • /
    • 2017
  • As the behavior of the debris flow due to the torrential rains in mountain is affected by shear strength and rheological properties of the fine fraction in the ground, the evaluation of both properties is necessary to estimate the behavior of the debris flow. The objective of this study is to evaluate the shear strength and rheological properties using the direct shear apparatus. The direct shear tests are conducted for two kinds of fine-grained soil specimens, which are in dry state and liquid limit state. From the direct shear tests, shear strengths are measured according to the normal stresses applied on the specimens to evaluate the cohesion and internal friction angle. In addition, reversal shear tests are performed for the fine-grained soil specimens in liquid limit state according to the shear rate to evaluate the residual shear strength. The results of direct shear tests show that the specimen at the liquid limit state has lower internal friction angle and higher cohesion compared to the dry stated, and the residual friction angle and cohesion at the residual state are lower than those at the peak state. In the result of reversal shear test, the residual shear strength is directly proportional to the shear rate and viscosity is calculated as $73.60Pa{\cdot}s$. This study demonstrates that the direct shear apparatus can be effectively used for the evaluation of the shear strength and rheological properties of the fine-grained soils related with the debris flow.