• Title/Summary/Keyword: 지반안정화

Search Result 139, Processing Time 0.018 seconds

Analysis of Settlement Characteristics of Block Pavement in Port Through Field Tests (현장시험을 통한 항만 구역 내 블록 포장의 침하 특성 분석)

  • Ha, Yong-Soo;Kim, Yun-Tae;Oh, Myounghak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.203-214
    • /
    • 2024
  • Ports often suffer pavement damage due to soft ground and heavy equipment operations, leading to issues such as differential settlement and cracks. In this study, we developed port concrete blocks and applied them to a port in two configurations to figure out settlement characteristics. Falling weight deflectometer (FWD) tests on asphalt pavement and block pavements were conducted to figure out deflection and bearing capacity. The block pavement with the cement treated base showed improved bearing capacity with the port operation since lower settlements were detected than asphalt pavement. In the cement treated base, the relative deflection ratio to asphalt concrete pavement was less than 1, indicating enhanced bearing capacity. LiDAR measurements identified multiple settlements in the crushed-stone base due to surface loads after construction. Both relative deflection ratio and LiDAR measurements suggested that block pavement can be widely applied to various port sites with its applicability and bearing capacity of cement-treated base.

Electrophoretic Particle Movement in Suspension Considering the Gravitational Settling and Sedimentation of Clayey Soil (중금속으로 오염된 점성토의 동전기영동에 의한 침강 거동에 관한 연구)

  • Lee, Myung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.44-52
    • /
    • 2007
  • Contaminated sediments more than 30 million/$m^3$ is generated from dredging work for harbours and coastal maintenance in Korea. Approximately 300 million/$m^3$ of sediments is dredged to deepen harbours and shipping lanes in US and of which $3{\sim}12million/m^3$ is highly contaminated. Although much is known about technologies for the remediation of heavy metal contaminated soil, much less is known about the treatment of contaminated sediment. In general, negatively charged fine particles will migrate towards positively charged system of electrodes under the influence of electrophoresis. However, the electrically induced migration of colloidal particles contaminated with heavy metals may be hindered by the positively charged heavy metal contaminants adsorbed onto the soil surfaces depending on the contamination level. This paper demonstrates settling behaviour of clayey soil by comparison with electrophoretic particle movement under the effects of heavy metal contamination, applied electric field strength, and its polarity changed by the electrode configuration.

Modeling the Effect of Excavation Sequence and Reinforcement on the Response of Tunnels with Discontinuous Deformation Analysis Method (불연속 변형 해석법에 의한 굴착순서 및 지반보강이 터널의 거동에 미치는 영향 모델링)

  • 김용일;김영근
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • This paper presents two new extensions to the DDA method. The extensions consist of sequential loading or unloading and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the DDA method with the new extensions are presented. Simulations of the underground excavation of the Unju Tunnel of Kyungbu High Speed Railway Project in Korea were carried out to evaluate the influence of excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the DDA program with the three new extensions can now be used as d practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Solidification of Sandy Soils using Cementation Mechanism of Microbial Activity (미생물활성에 의한 시멘테이션 작용을 이용한 모래지반의 안정화)

  • Kim, Ki-Wook;Yun, Sung-Wook;Chung, Eu-Jin;Chung, Young-Ryun;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.169-176
    • /
    • 2014
  • To evaluate bio-cementation of microbial on sands, laboratory test was conducted using acrylic cubic molding boxes ($5cm{\times}5cm{\times}5cm$). It was incubated the microbial, called Bacillus Pasteurii, according to Park et al (2011, 2012). and applied 50ml each specimen. Two type of sand samples used were Jumoonjin sand and common sand (well graded). These sands were molded in acrylic boxes with the relative density of 30 % and 60 % respectively. Microbial were poured onto the samples molded in acrylic boxes and cured at the room temperature and humidity. After 7, 14 and 21days, it was measured the compressive strength, pH, EC, and density and it were observed SEM and XRD to verify the effect of bio-cementation. It was found that bio-cementation was increased a strength of sands and it was appeared that strengths were related to the type of sand and relative density. Therefore it was confirmed the solidification of sands using the bio-cementation by microbial activation and the usefullness of acrylic molding boxes when tests were conducted on the soil of sands.

A study on the flexural toughness characteristics of the half-circle type steel fiber reinforced shotcrete (반원형 강섬유보강 숏크리트의 휨인성 특성에 관한 연구)

  • Ji, Young-Hwan;Jeong, Ji-Su;Jeong, Chun-Kyo;Lee, Seung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.83-96
    • /
    • 2011
  • Currently, the commonly used tunneling method in Korea is NATM (New Austrian Tunneling Method). This method uses the rock bolt, shotcrete, and supporting system to maintain the strength of original soil and ensures the stability of tunnel by stabilizing the soil using the original strength of the soil in maximum after the excavation. In past years, wire-mesh reinforced shotcrete was common ones but currently steel-fiber reinforced shotcrete is being widely used for the tunnel construction site in Korea to save construction time with the advanced construction technology. The results further indicate that needs for the establishment of not only the specifications for shotcrete but the strengthening methods for the under reinforced shotcrete sections. Therefore, this study deals with the development of a new steel-fiber to ensure the stability of tunnels that are under reinforced with steel-fibers and to overcome the shortcomings of conventional method.

Dependency of Compatibility Termination Criteria on Prehydration and Bentonite Quality for Geosynthetic Clay Liners (사전투수 및 벤토나이트 품질에 따른 GCL의 투수종결기준에 미치는 영향평가)

  • Lee Jae-Myung;Shackelford Charles D.;Choi Jae-Soon;Jung Moon-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.141-158
    • /
    • 2004
  • The dependency of criteria used to terminate compatibility tests on the prehydration and quality of bentonite in geosynthetic clay liners (GCLs) is evaluated based on permeation with chemical solutions containing 5, 10, 20, 50, and 100 mM calcium chloride ($CaCl_2$). The hydraulic conductivity tests are not terminated before chemical equilibrium between the effluent and the influent chemistry has been established, resulting in test durations ranging from < 1 day to > 900 days, with longer test durations associated with lower $CaCl_2$ concentrations. The evaluation includes both physical termination criteria (i.e., volumetric flow ratio and steady hydraulic conductivity based on ASTM D 5084, ${\ge}2$ pore volumes of flow, constant thickness of specimen) and chemical termination criteria requiring equilibrium between influent and effluent chemistry (viz., electrical conductivity, pH, and $Ca^{2+}\;and\;Cl^-$ concentrations). For specimens permeated with 5, 10, and 20 mM $CaCl_2$ solutions, only the criterion based on chemical equilibrium in $Ca^{2+}$ concentration correlates well with equilibrium in hydraulic conductivity, regardless of prehydration or quality of bentonite. However, all of the termination criteria, except for the volumetric flow ratio and 2 pore volumes of flow for the prehydrated specimens, correlate well with equilibrium in hydraulic conductivity regardless of prehydration or quality of bentonite when permeated with 50 and 100 mM $CaCl_2$ solutions. The results illustrate the uniqueness of the termination criterion based on solute concentration equilibrium between the effluent and the influent with respect to both prehydration and quality of bentonite in the GCLs.

Recycling of Coal Ash and Related Environmental Issues in Australia (호주의 석탄재 재활용 사례와 석탄재 재활용과 관련된 환경 문제)

  • Park, Jin Hee;Ji, Sang-Woo;Shin, Hee-Young;Jo, Hwanju;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Coal combustion products are generated during coal combustion and can be grouped into fly ash and bottom ash depending on collection methods. Fly ash and bottom ash can be recycled for various purposes based on their characteristics. Australia is the fourth largest coal production country in the world and reuses coal ash as cement, concrete, mine filler, and agricultural soil amendment. When fly ash is used as a supplement for cement and concrete, strength of the cement and the durability of the concrete can be improved. Use of coal combustion product for mine backfill stabilizes underground mine voids and stores a large amount of coal ash in the voids. Because of alkalinity of coal combustion products, it can neutralize acid mine drainage when used for mine backfill. In addition, it can be used as an agricultural soil amendment to improve acidity and physical properties of the soil and to supply plant nutrients. Recycling of fly ash in Australia will be further expanded because of its low trace element contents that can be toxic to plants and low radioactive element contents existing within soil background concentrations. The characteristics of coal combustion products are related to the characteristics of the coal used for combustion, and since Korea imports coal from Australia, Korean coal combustion products also can be recycled for various purposes.

An Estimation on the Applicability of Hollow FRP Soil Nailing System (중공식 FRP쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Koh, Hyung-Seon;Han, Yong-Hee;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.385-393
    • /
    • 2006
  • Soil nailing is a reinforcement method used for stabilizing excavated walls or slopes. Due to its much advantages such as ease of construction and economical efficiency, use of soil nailing is increased. However, the soil nail has much disadvantages for use in urban area. The soil nail needs to be installed inevitably beyond private land boundary, which causes rent for use. For this reason, removable soil nailing system was developed. However, the removal rate of this system is just about 50¢¦70%. To resolve this problem, the Fiber Reinforced Plastic (FRP) soil nailing system which does not need to be removed and allows for the installation beyond private land, is developed. In this paper, through theoretical and experimental studies in laboratory and field such as prototype tests, pullout tests, we evaluate the stability and behavior characteristics of the FRP soil nailing system. And, numerical analyses using FLAC2D were performed with respect to various soil conditions, where prototype test for excavation wall and pullout tests were carried out. As a result of this study, the FRP soil nailing systems show similar behavior characteristics with those of removable soil nailing system. Finally, considering the serviceability and mechanical stability of FRP soil nailing systems, it is enough to be used as a good alternative of general soil nailing system.

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF