• Title/Summary/Keyword: 지반손실량

Search Result 39, Processing Time 0.023 seconds

Numerical analysis of tunnelling-induced ground movements (터널굴착으로 발생한 지반거동에 대한 수치해석적 분석)

  • Son, Moo-Rak;Yun, Jong-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.229-242
    • /
    • 2009
  • Numerical analysis has been performed to estimate maximum settlement, maximum horizontal displacement and total settlement volume at the ground surface due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. In addition, the volume loss ($V_L$) at tunnel excavation face has been compared with the total surface settlement volume ($V_s$) with the variation of ground condition, tunnel depth, and tunnel diameter. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

Comparison of Ground Movements in A Single Ground Layer and Multiple Ground Layers due to Nearby Tunnel Excavation (터널굴착으로 발생한 주변 단일지층 및 복합지층 지반에서의 지반변위에 대한 거동비교)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.167-174
    • /
    • 2010
  • In this study, numerical analysis has been performed to compare the ground movements in a single ground layer and multiple ground layers due to nearby tunnel excavation. The numerical analysis has been conducted in the different ground layer conditions considering different construction conditions (volume loss at excavation face), and the results of the maximum surface settlement and horizontal displacement have been compared considering the ground layer and construction conditions. In addition, the maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering the ground layer and construction conditions, and the maximum surface settlement has been also compared with the maximum horizontal displacement with the ground layer conditions. Besides, the volume loss($V_L$) at tunnel excavation face has been compared with the total surface settlement volume($V_s$) with the variation of ground layer condition. The results from the numerical analysis have been compared with field measurements and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the nearby ground behavior in different ground layer and construction conditions due to tunnel excavation.

Damage Analysis of Nearby Structures with the Consideration of Tunnel Construction Conditions in Sandy and Clayey Ground (모래 및 점토지반에서 터널시공조건을 고려한 인접구조물의 손상도 분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.53-63
    • /
    • 2011
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different ground (loose sand, dense sand, soft clay, stiff clay) and construction conditions (ground loss). The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different ground and construction conditions (ground loss) using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of ground and construction conditions (ground loss) considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of ground and construction conditions (ground loss) using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

A Study on the Behavior of Surface Settlement due to the Excavation of Twin TBM Tunnels in the Clay Grounds (점토지반에서 TBM 병렬터널 굴진 시 지표침하거동에 대한 연구)

  • You, Kwangho;Jung, Suntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.29-40
    • /
    • 2019
  • Mechanized constructions have been frequently increased in soft ground below sea bed or river bed, for urban tunnel construction, and for underpinning the lower part of major structures in order to construct a safer tunnel considering various risk factors during the tunnel construction. However, it is difficult to estimate the subsidence behavior of the ground surface due to excavation and needs to be easily predicted. Thus, in this study, when a twin tunnel is constructed in the soft ground, it is proposed a simpler equation relating to the settlement behavior and a corrected formula applicable to soft ground and large diameter shield tunnels based on the previously proposed theory by Peck (1969). For this purpose, it was analyzed to long-term measurement values such as the amount of maximum settlement, the subsidence range by ground conditions, and interference volume loss due to the parallel construction, etc. As a result, a equation was suggested to predict the amount of maximum settlement in the soft sediment clay ground where is located at the upper part of the excavation site. It is turned out that the proposed equation is more suitable for measurement data in Korea than Peck (1969)'s.

Pile Load Transition and Ground Behaviour due to Development of Tunnel Volume Loss under Grouped pile in Sand (사질토 지반에서 터널체적손실 증가에 따른 군말뚝의 하중변이와 지반거동)

  • Oh, Dong Wook;Lee, Yong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • A development of underground space is very useful solution to slove problem occurred from ground surface enlargement in urban areas due to the growth of population, tunnelling is the most popular way and widely used. Researches regarding tunneling-induced pile-soil interactive behaviour have been conducted by many researchers. A study on pile axial force distribution due to tunnelling through laboratory model test, however, is being rarely carried out. In this study, therefore, authors investigate ground behaviour due to tunnelling below grouped pile subjected vertical load as well as pile axial force distribution. A concept of volume loss is used to express tunnel excavation, which is normally applied to 1~2% for tunnelling in soft ground. In this study, however, 10% of that applied to investigate failure mechanism. As a result of laboratory model test, a decrease of pile axial force occurs at 1.5% of volume loss, settlement of grouped pile is 1.2~4.7 times greater than the adjacent ground surface one. Ground deformations at 1.5% of volume loss are measured using Close Range Photogrammetry and compared with results from numerical analysis.

A study on numerical modeling method considering gap parameter and backfill grouting of the shield TBM tunnel (쉴드 TBM 터널의 gap parameter와 뒤채움재를 고려한 수치모델링 방법에 대한 연구)

  • You, Kwang-Ho;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.799-812
    • /
    • 2017
  • Backfill grouting and realistic convergence distribution were not properly considered in previous studies on 2D numerical analysis of a shield TBM tunnel. In this study, a modeling method was suggested to cope with this problem by considering a realistic convergence distribution and proper properties of backfill grouting. To this end, the influence of gap parameter and depth of rock cover on volume loss and composed of ground volume loss around tunnel excavation and surface volume loss were analyzed with a single layer of weathered soil. As a result, most of surface settlements were occurred immediately after excavation. Additional, as depth of rock cover and gap parameter increased, the influence range of surface settlement curves obtained from 2D numerical analyses became broader than a suggested theoretical equation. Therefore, it is inferred that gap parameter should be applied based on load distribution ratio and the property of backfill grouting properly considered for the estimation of the precise behavior of a shield TBM tunnel in 2D numerical analysis.

Analysis of Response Change of Structure due to Tunnel Excavation Conditions in Sand Ground (모래지반에서 터널 굴착조건들을 반영한 상부 블록구조물의 거동변화 분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1541-1549
    • /
    • 2013
  • This study investigates the response of structures to tunnelling-induced ground movements in sand ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), ground condition (loose sand and dense sand). Four-story block-bearing structures have been used because the structueres can easily be characterized of the extent of dmages with crack size and distribution. Numerical parametric studies have been used to investigae of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and ground condition and provided as a relationship chart. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in sand ground.

Response Analysis of Block-Bearing Structure due to Tunnel Excavation in Clay Ground (점토지반에서 터널굴착에 따른 상부 블록구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.175-183
    • /
    • 2014
  • This study investigates the response of structures to tunnelling-induced ground movements in clay ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), and tunnel ground condition (soft clay and stiff clay). Four-story block-bearing structures have been used because the structures can easily be characterized of the extent of damages with crack size and distribution. Numerical parametric studies have been used to investigate of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and tunnel ground condition and provide a relationship chart among them. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in clay ground.

Damage Assessment of Buried Pipelines due to Tunneling-Induced Ground Movements (터널시공에 따른 지반거동에 의한 지중매설관 손상 평가)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.71-86
    • /
    • 2001
  • 본 고에서는 도심지 터널의 과학적인 설계/시공을 위한 요소기술 확보의 일환으로 기존의 연구자들이 제시한 손상평가 기법을 토대로 터널굴착에 따른 지중매설관 손상여부의 예비평가를 위한 평가기법을 제시하였다. 제시된 기법을 토대로 다양한 경우에 대한 매개변수 연구를 수행한 결과 지반침하곡선의 경사 및 곡률 등 침하곡선의 제반특성에 기반을 둔 본 연구에서 개발된 손상평가기법의 평가결과는 변곡점의 위치에 많은 영향을 받는 것으로 나타났으며, 따라서 현장 특유의 지반특성 및 시공조건이 반영된 변곡점 산정식의 개발을 위한 지속적인 연구가 필요한 것으로 판단된다. 아울러서 터널심도가 터널직경의 2.5배 이하인 경우 손상도가 현저히 증가하며, 전반적으로 관의 재질이나 조인트의 형식에 관계없이 관체의 인장변형률이 손상여부를 결정짓는 인자인 것으로 나타났다. 본 연구에서 얻어진 결과를 종합하여 터널과 매설관의 상대적 위치 및 지반손실량에 따라 매설관의 손상정도를 정량적으로 평가할 수 있는 설계도표를 제시하였다.

  • PDF

Comparison of Shallow Model Tunnel Test Using Image Processing and Numerical Analysis (이미지 프로세싱을 이용한 얕은 터널 모형실험과 수치해석의 비교)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2006
  • In this study, 2D shallow tunnel model test using close range photogrammetric technique was conducted with aluminium rods simulating continuum granular material. Numerical analysis was also carried out in order to identify the behaviour of subsurface deformations caused by shallow tunnelling. Direction and magnitude of displacement vectors from the model test were identical to the result of numerical analysis based on the model data. In particular, it is shown that the vector direction was toward a point below the tunnel invert level. A narrow "chimney or tulip like" pattern of vertical displacement was confirmed by both the model test and numerical analysis. This behaviour is consistent with the field data. In addition to the qualitative comparison, the quantitative result of subsurface settlements according to 2D volume loss showed good agreement between the model test and numerical analysis. Therefore, close range photogrammetric technique applied in the model test may be used to validate the result from the continuum numerical analysis.