• Title/Summary/Keyword: 지반변위

Search Result 1,357, Processing Time 0.027 seconds

Response Analysis of Nearby Structures to Excavation-Induced Advancing Ground Movements (지반굴착 유발 진행성 지반변위에 의한 인접구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.153-162
    • /
    • 2009
  • This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions of different soil and structural characteristics. The response of four and two-story block structures, which are subjected to excavation-induced advancing ground movements, are investigated in different soil conditions using numerical analysis. The structures for numerical analysis are modelled to have cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four and two-story block structures are investigated with advancing ground movement phases and compared with the response of structures which are subjected to excavation-induced total ground movement. The response of structures is compared among others in terms of the magnitude and shape of deformations and cracks in structures for different structure and ground conditions. The results of the comparison provide a background for better understandings for controlling and minimizing building damage on nearby structures due to excavation-induced ground movements.

Lateral Displacement Analysis of Concrete Electric Pole Foundation Grounds (배전용 콘크리트전주 기초지반의 횡방향변위 분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.42-49
    • /
    • 2009
  • The effects of various forces acting on concrete pole are analyzed using finite element method how the forces affect on ground displacement. The soil types, wind load location of anchor block embedded depth of pole, and distance between poles are varied to find out effects on lateral displacement. Anchor block is effective when it is located at 1/4 of embedded depth The displacement is decreases as elastic modulus increases. Concrete reinforcement for loosened ground is necessary for double poles because double poles cause large excavation. When embedded depth ratio decrease, lateral displacement increase as closer to ground surface. Large embedded depth is effective to reduce lateral displacement, and the distance between poles is not much large factor.

Lateral Displacement and Ground Rising Movement with Soil Embankment (성토에 따른 지반의 측방변위와 지표면 융기량)

  • Jeong, Ji-Cheol;Shin, Bang-Woong;Oh, Se-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2004
  • During and after the construction of embankment on soft ground, consolidation settlements and lateral displacements develop. But generally it's very difficult to predict the magnitude of lateral deformations and the correct distribution of lateral displacements with depth under the toe of embankment because the consolidation and the shear deformations of soft ground occur simultaneously. This study shows that later displacements of ground surface arise by embankment loading act on soft clay hight water contents in laboratory model testing. The results of model test are observed settlement of embankment, amount of maximum rising and displacement of ground surface with loading velocity. The formula were proposed to predict lateral movement by test series.

  • PDF

Analysis of Ground Movements due to Tunnel Excavation Considering Ground Conditions, Excavation Characteristics, and Ground Layer Formations (지반조건, 굴착특성 및 지층구성을 고려한 터널굴착 유발 지반변위 거동분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.239-250
    • /
    • 2009
  • Tunnelling-induced settlements and lateral ground movements have been investigated by numerical parametric studies considering ground condition, excavation characteristics, and ground layers. Before the numerical study the existing methods of ground movement estimation have been collected and analysed to have some information of ground movements and to improve them providing a fundamental material for the numerical study. Numerical model simulation has been performed of a physical model test of tunnel excavation in which the ground movements were measured reliably and the results have been used to determine the numerical approach and the appropriate soil constitutive mode. With this procedure done, the results of numerical parametric studies have been put together to analyze and understand tunnelling-induced settlements and lateral ground movements.

The Relationship between Loading Velocity and Ground Heaving Characteristics (재하속도와 지반융기 특성의 상호관계)

  • Oh, Se-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.77-83
    • /
    • 2006
  • The purpose of this study is to analyze lateral displacement behavior of clay layers in case of the banking in soft ground through model tests. Seven model tests varying with thickness of soft clay and loading velocity are performed to correlate between ground heaving and loading velocity. In case of low loading velocity, vertical settlement below loading plate and small ground heaving are obviously observed. In case of the high loading velocity, it is shown that both soil displacement at the end of a loading plate and surface heaving are large. In addition, the calculated displacements show good agreement with three cases of field measurements in clay with high moisture contents so that we can predict the range of heaving area and the amount of heaving.

  • PDF

쉴드터널의 계측시스템 구축

  • 진치섭;김성준
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.12-25
    • /
    • 1995
  • Shield 터널의 굴진에 따른 지반변위를 Real Time으로 측정하여 지반변위를 가장 작게 일으키는 굴진 Pattern을 결정하는 것이 계측시스템구축의 목적이다. 대상지반은 부산시 구포전력구 현장의 대표적인 지반이라 생각되는 Silt 층인 #11 작업구 인근과 모래층인 #7 작업구 인근에서 각각 실시하였다. 계기매설에서 계측결과분석은 1994년 6.22-11.5에 수행하였다. 계측결과로부터 얻어지는 효과는 Shield 터널굴진에 따른 지반변위의 형태와 크기를 파악할 수 있고 가장 적절한 굴진 Pattern 제시로 인근 매설물에 영향을 미치지 않는 시공을 가능케 하며 자동계측의 계기매설 및 계측기술을 습득할 수 있다. 본 전력구 공사에서는 자동계측용 Computer Software 및 관련장비를 확보하고 국내 최초의 Shield 터널 자동계측을 수행하였다.

  • PDF

Evaluations of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Underground Structures (지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구)

  • 윤종구;김동수;유제남
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.211-221
    • /
    • 2003
  • The response displacement method is the most frequently used method for seismic design of underground structures. This method is pseudo-static method, and the evaluations of velocity response spectrum of seismic base and response displacement of surrounding soil are the most important steps. In this study, the evaluation of velocity response spectrum of seismic base according to the Korean seismic design guide and the simple method of calculating the response displacement were studied. It was found that velocity response spectrum of seismic base can be estimated by directly integrating the ground-surface acceleration response spectrum of soil type S$_A$, and the evaluation of the response displacement using double cosine method assuming two layers of soil profile shows the advantages in the seismic design.

Analysis of surface displacement of Gwangsan-gu using PS-InSAR technique (PS-InSAR기법을 이용한 광산구 지표 변위 분석)

  • Lee, Won-Eung;Yoon, Hong-Sik;Youm, Min-Kyo;Lee, Joon-Min
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.369-371
    • /
    • 2017
  • 지반침하는 열차 탈선과 같은 대형재난을 야기할 수 있다. 그러므로 지반침하를 사전에 파악하기 위한 다양한 연구가 진행 중이다. 최근 광범위한 지역의 지표변위를 경제적으로 분석할 수 있는 InSAR(nterferometric SAR)기법을 이용한 연구가 활발히 진행되고 있다. InSAR 기법 중 PS-InSAR(Permanent Scatterer Interferometric SAR)기법이란 SAR영상에서 긴밀도가 높은 고정산란체(PS:Permanent scatterer)를 이용하여 지반침하를 분석하는 기법으로 다른 InSAR 기법에 비해 대기에 의해 발생하는 오차가 적으며, 보다 정확한 지표변위량을 도출할 수 있다. 또한 장기간에 걸친 시계열적 지표 변위 분석에 용이하다. 본 논문에서는 독일의 Terra SAR-X 위성 영상을 이용하여, 광주광산구의 지표변위를 분석하였다. 연구지역인 광주 광산구는 대표적인 연약지반인 평야지역에 위치해 있으며, 실제로 2015년 한국시설안전공단의 발표에 의하면 6곳의 지반탐사 필요 의심지역이 존재할 만큼 지반이 불안정한 지역이다. 연구 결과 광주 광산구 8mm/year로 지반이 침하되고 있음을 알 수 있었다. 이에 광주 광산구 일대의 지반침하 대비를 위해 다양한 노력들이 필요할 것으로 사료된다.

  • PDF

Seismic Analysis of Ground for Seismic Risk Assessment of Architectural Heritage in Seoul (건축문화재 지진 위험도 평가를 위한 지반의 내진해석 : 서울지역을 중심으로)

  • Han, Jung-Geun;Keon, Seong-Kon;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.133-141
    • /
    • 2013
  • This paper describes the earthquake risk evaluation of 15 sites of architectural heritages, which are considered ground conditions of sites in Seoul. In order to acquire the input data of earthquake response analysis, surface wave exploration was performed at the site. Earthquake response analysis and 3D earthquake safety evaluation were carried out under the base of scenario earthquakes. Ground displacements of areas, which are located on architectural heritages, are showed about 0.5 mm ~ 9.7 mm, and it was analyzed to small affected by earthquakes. In case of Naksungdae three-story stone pagoda, ground displacement is similar to the others. However, displacement of three-story stone pagoda with granite is 30 mm on the top, because the greatest occurrence of that is caused by stress release at seismic wave effect.

Analysis of ground settlement due to circular shaft excavation (원형 수직구 굴착에 따른 발생 지반침하 분석)

  • Moorak Son;Kangryel Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.87-99
    • /
    • 2023
  • Ground excavation inevitably causes ground displacement of adjacent ground, and structures and facilities exposed to ground displacement may suffer various damages. Therefore, in order to minimize the damage and damage to adjacent structures and facilities caused by excavation, ground displacement (settlement and horizontal displacement) in the adjacent ground caused by excavation must first be predicted. There is many ground displacement information induced by general braced cut excavation, but the information is not enough for circular shaft excavation. This study aims to provide information on the estimation of ground settlement caused by circular shaft excavation through the case analysis of circular shafts and comparison with braced cut excavation. From this study, it was found that the use of the settlement criterion of braced cut excavation as the settlement management criterion for circular shaft excavation is a conservative approach in terms of safety. But when considering the economic aspect, it may result in overdesign of the wall and therefore, a more reasonable settlement criterion can be needed for circular shaft excavation.