• Title/Summary/Keyword: 지반구조물 상호작용

Search Result 310, Processing Time 0.023 seconds

A probabilistic fragility evaluation method of a RC box tunnel subjected to earthquake loadings (지진하중을 받는 RC 박스터널의 확률론적 취약도 평가기법)

  • Huh, Jungwon;Le, Thai Son;Kang, Choonghyun;Kwak, Kiseok;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • A probabilistic fragility assessment procedure is developed in this paper to predict risks of damage arising from seismic loading to the two-cell RC box tunnel. Especially, the paper focuses on establishing a simplified methodology to derive fragility curves which are an indispensable ingredient of seismic fragility assessment. In consideration of soil-structure interaction (SSI) effect, the ground response acceleration method for buried structure (GRAMBS) is used in the proposed approach to estimate the dynamic response behavior of the structures. In addition, the damage states of tunnels are identified by conducting the pushover analyses and Latin Hypercube sampling (LHS) technique is employed to consider the uncertainties associated with design variables. To illustrate the concepts described, a numerical analysis is conducted and fragility curves are developed for a large set of artificially generated ground motions satisfying a design spectrum. The seismic fragility curves are represented by two-parameter lognormal distribution function and its two parameters, namely the median and log-standard deviation, are estimated using the maximum likelihood estimates (MLE) method.

A Practical Hybird Approach for Nonlinear Time-Domain Analysis of Soil-Structure Interaction (지반-구조물 상호작용의 비선형 시간영역해석을 위한 실용적 복합기법)

  • 김재민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.132-139
    • /
    • 2000
  • This paper presents a new hybrid approach for nonlinear dynamic analysis of the soil-structure interaction system in the time domain. It employs, in a practical manner, a linear SSI program and a general-purpose nonlinear finite element program. In order to demonstrate the validity and applicability of the proposed method, seismic response analyses are carried out for a free-field problem and a 2-D subway station. The results indicate that the proposed methodology gives reasonable solution for the linear/nonlinear SSI problem utilizing a general-purpose finite element program. Some further studies will endorse the applicability of the method to various soil-structure interaction problems.

  • PDF

Optimal Design of Integrated Control System Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 복합제어시스템의 최적설계)

  • Park, Kwan-Soon;Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • For the vibration control of earthquake-excited buildings, an optimal design method of integrated control system considering soil-structure interaction is studied in this paper. Interaction between soils and the base of the building is simply modeled as lumped parameters and equations of motion are derived. The equations of motion are transformed into the state space equations and the probabilistic excitations such as Kanai-Tajumi power spectral density function is introduced. Then an optimization problem is formulated as finding hybrid or integrated control systems which minimizes the stochastic responses of the building structure for given constraints. In order to investigate the feasibility of the optimization method, an example design and numerical simulations are performed with tenstory building. Finally, numerical results are compared with a conventional design case that soil-structure interaction is not considered.

Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation (온실기초의 구조물-지반 상호작용 해석을 위한 유한요소 모델링)

  • Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • In this study, structural behavior of plastic greenhouse foundation was investigated using rational finite element modeling for structures which have different material properties each other. Because the concrete foundation of plastic greenhouse and soil which surround and support the concrete foundation have very different material property, the boundary between two structures were modeled by a interface element. The interface element was able to represent sliding, separation, uplift and re-bonding of the boundary between concrete foundation and soil. The results of static and dynamic analysis showed that horizontal and vertical displacement of concrete foundation displayed a decreasing tendency with increasing depth of foundation. The second frequency from modal analysis of structure including foundation and soil was estimate to closely related with wind load.

Infinite Boundary Elements for Soil-Structure Interaction Analysis in Time Domain (지반-구조물 상호작용의 시간영역 해석을 위한 무한경계요소)

  • 윤정방;최준성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.137-144
    • /
    • 1994
  • In this study, a new procedure for solving 2-D dynamic problems of semi-infinite medium in time domain by boundary element method (BEM) is presented. Efficient modelling of the far field region, infinite boundary elements are introduced. The shape function of the infinite boundary element is a combination of decay functions and Laguerre functions. Though the present shape functions have been developed for the time domain analysis, they may be also applicable to the frequency domain analysis. Through the response analysis in a 2-D half space under a uniformly distributed dynamic load, it has been found that an excellent accuracy can be achieved compared with the analytical solution

  • PDF

Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 장대교량의 동적 거동)

  • Lim, Che-Min;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2004
  • The effect of soil-structure interaction becomes important in the design of civil structures such as long-span bridges, which are constructed in the site composed of soft soil. Many methodologies have been developed to account for the proper consideration of soil-structure interaction effect. However, it is difficult to estimate soil-structure interaction effect accurately becaused of many uncertainties. This paper presents the results of study on soil-structure interaction and dynamic response of a long-span bridge designed in the site composed of soft soil. The effect of the soft soil was evaluated by the use of computer program SASSI and a long-span bridge structure was modeled by finite elements. Dynamic response characteristics of a long-span bridge considering soil-structure interaction wereinvestigated.

Analysis of Soil-Structure Interaction Considering Complicated Soil Profile (복잡한 지층 형상을 고려한 지반-구조물 상호작용 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.87-93
    • /
    • 2006
  • When a structure is constructed at the site composed of soil, the behavior of a structure is much affected by the characteristics of soil. Therefore, the effect of soil-structure interaction is an important consideration in the design of a structure at the site composed of soil. Precise analysis of soil-structure interaction requires a proper description of soil profile. However, most of approaches are nearly unpractical for soil exhibiting material discontinuity and complex geometry since those cannot consider precisely complicated soil profiles. To overcome these difficulties, an improved integration method is adopted and enables to integrate easily over an element with material discontinuity. As a result the mesh can be generated rapidly and highly structured, leading to regular and precise stiffness matrix. The influence of soil profile on the response is examined by the presented method. It is seen that the presented method can be easily used on soil-structure interaction problems with complicated soil profile and produce reliable results regardless of material discontinuities.

Seismic Response of Base-Isolated Liquid Storage Tanks Considering Liquid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 면진된 유체저장탱크의 3차원 지진응답)

  • 조성용;김문겸;임윤묵
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.98-105
    • /
    • 2002
  • The effects of the base-isolation system and elastic soil foundation on the behavior of a liquid storage tank are studied. To evaluate the seismic response of liquid storage tank accurately, the coupled dynamic system considering base isolation and soil interaction problem is formulated in time domain. Results show that the base isolation system reduces effectively the radial displacements, base shears, overturning moments, axial resultant stresses and the hydrodynamic pressure by providing flexibility and energy dissipation capability. Base Isolation may, however, increase the relative liquid sloshing amplitude due to the effect of liquid-structure interaction and cause excessive large relative displacements between structure and foundation. In addition to base-isolator, the dynamic behavior of liquid storage tank is related to the flexibility of base foundation, so the analysis of soil-structure interaction s achieved.

  • PDF

Seismic Analysis of Bridges Accounting for Soil-Pile-Structure Interaction (지반-말뚝-구조물 상호작용을 고려한 교량구조물의 지진해석)

  • Kim, Moon-Kyun;Lim, Yun-Mook;Cho, Kyung-Hwan;Kim, Ji-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.405-412
    • /
    • 2005
  • In this study, a numerical method for soil-pile-structure interaction problems in multi-layered half-plane is developed. The total soil-pile-structure interaction system is divided into two parts namely, nonlinear structure part and linear soil-pile interaction parts. In the structure field, the general finite element method is introduced to solve the dynamic equation of motion for the structure. In the soil-pile structure interaction part, physical model consisting of lumped parameter, which is frequency dependent coefficient and determined by rigorous analysis method is introduced. Using proposed analysis procedure, the nonlinear behavior of structure considering soil-structure interaction can be efficiently determined in time domain and the analysis cost is dramatically reduced.

  • PDF

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method. (부분구조법에 의한 지반-구조물 상호작용 시스템의 지진응답 매재변수 해석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.117-125
    • /
    • 1997
  • ABSTRACT This paper presents results of parametric studies of the seismic responses of a reactor containment structure on layered base soil. Among the numerous parameters, this study concentrates on the effects of embedment of structure to the base soil, thickness of the soil layers, stiffness of the base soil, and the definition point of the input motion. For the analysis, a substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of the SSI system computed from the ratio of dissipated energy to the strain energy for each mode. From the study results, the sensitives of each parameter on the earthquake responses have been suggested for the practical application of the substructure method of SSI analysis.

  • PDF