• Title/Summary/Keyword: 지반고화

Search Result 123, Processing Time 0.024 seconds

The Thickness of Shear Zone in Granular Materials Using Digital Image Processing (DIP 기법을 이용한 조립토의 전단영역 크기 분석)

  • Min, Tuk-Ki;Kim, Chi-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.89-97
    • /
    • 2006
  • This study investigated the effect of relative density on the thickness of shear zone. Digital image processing was used to measure the thickness of shear zone under plane strain conditions. A suitable epoxy resin was injected into the sample and the thickness of the shear zone was investigated. Four independent condition samples were prepared and the thickness of the shear zone was measured. The results indicated that the thickness of shear zone increases as the initial density of sample increases, and during the shear, the void ratios of the shear zone were changed, but the thickness of shear zone was not changed. In addition, the result of measurement of the thickness showed that the thickness of shear zone was almost fixed before critical state, but beyond critical state, the thickness of shear zone sharply increases as relative density increases.

Stress-strain Behavior of Hardened Barrier on Soft Soil (연약지반 위에 포설된 고화차수재의 응력-변형 특성)

  • 장연수;이종호;임학수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.607-614
    • /
    • 2000
  • Settlement with crack on the hardened liners may occur in the weak clay due to waste load since the stiffness of the hardened liner is greater than that of the clay layers. Way of reducing deformation crack in the hardened liner is investigated using two computer programs, CONSOL and FLAC. The computer program CONSOL estimates the magnitude of settlement with time in clay layers and FLAC analyses the stress and deformation relationship between the foundation of landfill and waste load. The results show that a representative block of the analyzed area reaches the consolidation settlement of 1.32m, 8.8 years after the disposal of waste started with the degree of consolidation U=90%. The stress within the hardened liner exceeds the allowable vertical stress of 5kg/$\textrm{cm}^2$ and horizontal stress of 1.67kg/$\textrm{cm}^2$ at the concave part of the liner where the main and branch drainage pipes of leachate are located. It was recognized that the thickness of the interested area should be enlarged or the strength of the same area should be improved to tolerate the planned waste load.

  • PDF

A Study on the Application of Paper Fly Ash as Stabilization/Hardening Agent (지반개량재로서 제지회의 활용에 관한 연구)

  • Lee, Yong-An;Lee, Hong-Ju;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.23-33
    • /
    • 2002
  • Examined a practical use possibility of paper fly ash that is industrial by-product as a stabilization/hardening agent. Performed unconfined compression test, scanning electron microscopy and pH analysis etc. for 100% paper fly ash-soil mixtures and each paper fly ash-soil mixtures that add cement as the second addition and sulfate component of small quantity for strength promotion and so on. In all cases, strength of admixtures increased according as curing time and mixing ratio increases but almost strength is revealed at mixing early and expressed maximum strength increase efficiency at mixing ratio 9% with raw soil. Compare with the case that use paper fly ash only, in case of cement amount 10~30% was included in paper fly ash, strength of admixtures increases two times and 40% was included, that increases from five to eight times.

  • PDF

Strength Characteristics of the Soil Mixed with a Natural Stabilizer (친환경 토양안정재를 혼합한 지반의 강도특성)

  • Kwon, Youngcheul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • This article aims to find method to mix a harmless hardening agent and soil generated during construction to make paving materials. The main purpose of this research is to get rid of the harmfulness(Chromium (VI), etc.) of cement which has been generally and frequently used as a hardening agent and strengthen it so that it can be used for the general foundation solidification and stabilization of civil engineering/construction structures such as dredging soil treatment, marine structure foundation treatment, surface soil stabilization, and river bank erosion prevention. NSS(Natural Stabilizer Soil) used for this study takes as its chief ingredient the mixture of lime and staple fibers extracted from natural fibers. It increases the shearing strength of soil that it improves the support and durability of the foundation and prevents flooding and frost as well. The pH measured to know its eco-friendliness was 6.67~7.15, and according to the migration testing, only Pb and CN were lower than the standards, so it can be said that NSS has almost no harmful components in it. According to the result of uniaxial strength testing, when the mixture ratio of weathered soil to NSS was 6%, about 1,850kpa strength was expressed. And according to the result of CBR. testing to figure out its appropriateness as a paving material, the CBR of the foundation was 4%~6%. But when the mixture ratio of NSS is over 6%, the water immersion CBR. is over 100%; thus, it is expected that it will show great utility as a paving material.

Field Application of an Eco-Friendly Solidification Material for Forest Road Pavement (친환경 고화재를 이용한 임도포장의 현장 적용성 연구)

  • Lee, Kwan-Hee;Ko, Chi-Ung;Kim, Dong-Hyun;Oh, Se-Wook;Kim, Dong-Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • Among the forest road pavement methods, the majority of current constructions utilize concrete pavements but it has disadvantages as follows: many cracked concrete pavements generated by the erosion of underlying soil layers, could not be used as forest roads in steep slope during winter, and cement contains hazardous chemicals (hexavalent chromium, etc.). In order to supplement the limitations of the use of concrete pavement, this study was conducted to investigate the operation process and cost, the strength and compaction of the experimental forest road pavement(85 m) utilizing eco-friendly solidification material at Goryeong-gun, Gyeongsangbuk-do. The work elements of experimental forest road paving were classified into: preparation, Roadbed excavation, Roadbed grading, subgrade compaction, form work, collection and selection of site soil, mixing site soil and eco-friendly solidification material, paving by eco-friendly solidification material, compaction by vibrating roller and curing. The result of economic analysis using construction cost shows that for concrete costs total to $38,681won/m^3$ while for the eco-friendly paving material it is $38,245won/m^3$. Thus the construction costs for concrete and the eco-friendly paving material are similar. And the results of the Schmidt Hammer test for strength analysis by curing period are 10.5-13.5 MPa for 7 days, 18.1-22.7 MPa for 14 days, and 20.8-23.0 MPa for 28 days.

Experimental Study on Engineering Characteristic of the Waste Landfill Soil Admixed Linear (폐기물매립지 토사계 혼합 차수재의 공학적 특성에 대한 실험적 연구)

  • Chang, Yongchai;Kim, Jinchun;Jeong, Ogki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Leachates resulting from the waste landfill of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water to and prevent this second pollution. The material used as Liner layer should have water resistance and be less than permeability coefficient of $1{\times}10^{-7}$ cm/sec. As it is very difficult to get this kind of natural clay with low permeability around the field, the suitable way to get the low permeable material is to use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil, which can resist water, is commonly used in the site, namely, bentonite and MCG cementious mateiral mixed soil, which is widely used as Liner layer in the reclaimed land of waste, is recognized in Liner and durability. The study was performed to find the effect of additive of the bottom liner in the waste landfill. The aim of this paper is to explain of the field application examples as well as the data of experimental research with the engineering properties of Liner layer of the reclaimed land.

  • PDF

A Study on the Grouting Effect of Ultrafine Cement in Rock Ground (초미립자 시멘트의 암반지반 그라우팅 주입효과에 관한 연구)

  • An, Jun-Hee;Park, Choon-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.279-286
    • /
    • 2018
  • The grouting method is to reinforce the ground by injecting the chemical solution for the strengthening of the ground. Cement grouting material has usually used portland cement for centuries ago, but the cement particle size is large and the injection effect is limited. This study analyzes the effect of ultrafine cement grouting in rock ground using 3S-1 grouting in rock ground and ordinary Portland cement (OPC). The results of tests were compared and analyzed from the Lugeon test, bore loading test (P.M.T.), and injection (P-Q) test. The use of ultrafine cement (3S-1) had a higher effect (K, 10-6cm/sec) than OPC. The reinforcement effect of 3S-1 was also confirmed. Ultrafine cement (3S-1) was 4~9 times more injectable than OPC. Therefore, it is more advantageous to use ultrafine cement (3S-1) than OPC.

Engineering Characteristics of Slime Generated by Application of Deep Mixing Method (심층혼합공법 적용시 발생하는 슬라임의 공학적 특성)

  • Jun, Sanghyun;Park, Byungsoo;Lee, Haeseung;Yoo, Namjae;Moon, Mansik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.99-103
    • /
    • 2009
  • This research is the result of investigating engineering characteristics of slime generated during construction of deep mixing method. Mechanical characteristics of slime have been studied through literature review and laboratory tests of unconfined compression test, permeability test and settling tests were performed. As result of field observation of slime being generated, slime started to be produced right after flight auger was penetrated into a ground and its amount was increased in progress. Unconfined compressive strength of specimen with slime obtained from in field was measured in the range of $929.7{\sim}3,509.8kN/m^2$ and the value of unconfined compressive strength was found to be changed significantly with mixing ratio of soil, cement and binder. Permeability of them was measured in the range of $4.53{\times}10^{-7}{\sim}6.62{\times}10^{-6}cm/sec$ so that the mixture was appropriate as a impervious barrier. It was also know that the value of permeability was changed with the mixing ratio of binder. As test results of solidifying slime specimen prepared in the laboratory, good quality of cement mixture with coarse soil of sand were produced, compared with fine soils of silt and clay.

  • PDF

A Study on the Utilization Method in the SCW Method using Supplementary Cementitious Materials (시멘트 대체재료를 활용한 SCW공법에서의 활용 방안에 대한 연구)

  • Kwang-Wu Lee;Jae-Hyun Park;Young-Won Lee;Dae-Sung Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.87-95
    • /
    • 2023
  • Recently, redevelopment of the original downtown area is underway, the necessity of construction in adjacent location is increasing. However, excavations in dense urban areas are prone to ground problems due to various causes, so it is necessary to use materials and methods that can minimize such problems. As a general earth retaining method, various methods such as diaphragm wall and CIP method are applied using cement. However, since a large amount of cement is used for the installation of earth retaining method, it is necessary to conduct research on the development of new cement substitute materials to significantly reduce greenhouse gas emissions. In this study, we utilized the hardening reaction of blast furnace slag powder, desulfurized gypsum and high calcium fly ash by alkali activation and applied it to the SCW method. As a result, it was analyzed that the compressive strength of solidified soil using development solidification material was 96.2 ~ 106.3% of OPC at 28 days of curing. In addition, the strength increment ratio was 2.06 for sandy soil and 2.41 for clayey soil, which was higher than 1.85 of OPC. It seems an advantageous in terms of long-term strength. In addition, from the environmental point of view, it was analyzed that there is no elution of heavy metals and that greenhouse gas emissions can be dramatically reduced. Therefore, if further studies are conducted, it can be applied to the SCW method.

Consolidation Behavior of Poor Mixed Soil-Cement (빈배합 시멘트 혼합점토의 압밀 특성)

  • Lee, Jongmin;Kwon, Youngcheul;Lee, Heunggil;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.25-31
    • /
    • 2010
  • The amount of dredging clay will be greatly increased by the eco-rive project and port development in Korea. Geotechnical engineers have thrown their efforts into the new ways for effective re-uses of the dredging clay such as the material for reclamation, and so on. However, very high initial water content and low strength causes unexpected difficulties in the aspect of trafficablility or time for consolidation. Therefore, the injection of cement stabilizer is used as one of ways to improve reclaimed ground. However, it also makes an argument by heavy metal from cement stabilizer. In this paper constant rate of strain consolidation test and normal consolidation test were performed to investigate behavior characteristics of the consolidation about soil-cement include lean mixed cement to reduce the environmental loads by the cement. The experimental results of consolidation characteristics about soil-cement include lean mixed cement influenced by mixing ratio. Especially it was observed that mixing ratio of 4%~6% leads not only the reduction of consolidation settlement, but time for consolidation.