최근 금융과 기술이 결합된 핀테크 기술이 각광받고 있고 모바일 기기에서 바이오 정보를 이용한 간편 결제를 이용하는 사람들이 늘어나고 있다. 본 논문에서는 기존의 지문, 홍채, 정맥 인식과 같은 생체인식 시스템과 달리 별도의 센서 추가 없이 스마트폰의 후면 카메라로 촬영된 엄지손가락 후면 영상을 이용한 새로운 비접촉식 바이오인식 방법을 제안한다. 제안하는 방법에서는 엄지손가락의 길이, 너비, 주름 정보를 특징으로 사용한다. 이를 위해 가이드라인에 맞춘 엄지손가락 영상을 촬영하고, 조명 정규화, 피부색 영역 검출, 크기 정규화 및 정렬 과정을 거친 후 상관계수 계산을 통해 유사도를 측정한다. 인식 정확도 측정을 위해 동일인 매칭 및 타인 매칭을 진행하였으며, 오거부율이 1.55%일 때, 1.68%의 오수락율의 결과를 얻었다. 타인 매칭 결과에 대한 분포가 정규분포에 가깝게 나타나 보안성 측면에서 더욱 중요한 오수락율이 적다는 장점을 가진다. 오거부율이 15% 수준일 때 오수락율을 0%까지 낮출 수 있어 보안성을 우선시 하는 금융시장에서 본인 확인 목적의 바이오인식 방법으로 활용될 수 있을 것으로 판단된다.
본 연구에서는 효율적인 학습규칙의 신경망 기반 독립성분분석기법을 이용한 영상신호의 분리와 특징추출을 제안하였다. 제안된 학습규칙은 할선법과 모멘트를 이용한 조합형 고정점 학습알고리즘이다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위한 목적함수의 최적화 과정에서 요구되는 1차 미분에 따른 계산을 간략화하기 위함이고, 모멘트는 최적화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 $512\times512$의 픽셀을 가지는 10개의 영상을 대상으로 임의의 혼합행렬에 따라 발생되는 혼합영상의 분리에 적용한 결과, 뉴우턴법에 기초한 기존의 알고리즘과 할선법만에 기초한 알고리즘보다 각각 우수한 분리률과 빠른 분리속도가 있음을 확인하였다. 또한 $256\times256$ 픽셀의 10개 지문상과 $480\times225$ 픽셀의 지폐영상에서 선택된 각각 10,000개의 3가지 영상패치들을 대상으로 적용한 결과, 제안된 기법은 뉴우턴법이나 할선법의 알고리즘보다도 빠른 특징추출 속도가 있음을 확인하였다. 한편 추출된 $16\times16$ 펙셀의 160개 독립성분 기저벡터 각각은 영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인하였다.
얼굴인식은 이미지의 많은 변동(표정, 조명, 얼굴의 방향 등)으로 인해 한 가지 인식 방법으로는 높은 인식률을 얻기 어렵다. 이러한 어려움을 해결하기 위해, 여러 가지 정보를 융합시키는 데이터 퓨전 방법이 연구되었다. 기존의 데이터 퓨전 방법은 보조적인 생체 정보(지문, 음성 등)를 융합하여 얼굴인식기를 보조하는 방식을 취하였다. 이 논문에서는 보조적인, 생체 정보를 사용하지 않고, 기존의 얼굴인식방법을 통해 얻어지는 상호보완적인 정보를 융합하여 사용하였다. 개별적인 얼굴인식기의 정보를 융합하기 위해, 전체적으로는 Dempster-Shafer의 퓨전이론에 근거하면서, 핵심이 되는 질량함수를 새로운 방식으로 재정의학 퓨전모델을 제안하였다. 제안된 퓨전모델을 사용하여 개별적인 얼굴인식기의 정보를 융합한 결과, 보조적인 생체정보 없이, 개별적인 얼굴인식기보다 나은 인식률을 얻을 수 있었다.
In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.
This paper describes a fingerprint classification on the basis of feature points(whorl, core) and feature vector and uses a syntactic approach to identify the shape of flow line around the core. Fingerprint image is divided into 8 by 8 subregions and fingerprint region is separated from background. For each subregion of fingerprint region, the dominant ridge direction is obtained to use the slit window quantized in 8 direction and relaxation is performed to correct ridge direction code. Feature points(whorl, core, delta) are found from the ridge direction code. First classification procedure divides the types of fingerprint into 4 class based on whorl and cores. The shape of flow line around the core is obtained by tracing for the fingerprint which has one core or two core and is represented as string. If the string is acceptable by LR(1) parser, feature vector is obtained from feature points(whorl, core, delta) and the shape of flow line around the core. Feature vector is used hierarchically and linearly to classify fingerprint again. The experiment resulted in 97.3 percentages of sucessful classification for 71 fingerprint impressions.
전국 350여개의 보호소는 매년 약 10만 마리의 유기동물이 거쳐간다. 입양희망자에게 입양되지 않으면 보호소에 들어온 지 20일만에 4마리 중 1마리 꼴로 안락사를 당한다. 따라서 유기동물 발생을 방지하기 위해 손쉽게 반려동물을 등록하고 이력을 관리할 수 있는 비문 등록 기술이 필요하다. 본 논문에서는 사람의 지문처럼 반려동물을 식별할 수 있는 비문을 통한 인식 기술을 개발 하기 위해 비문 영상에서 특징점을 기술 할 수 있는 지역 기술자에 대해 제안 했으며 시물레이션을 통해 효용성을 입증하였다.
본 실험은 소맥품종 Weibull's Svenno종자(수분함량 11.3%)에 감마선과 속중성자를 조사한후 일정기간의 저장효과를 저장시 온도와 관련시켜 조사한 결과이다. 감마선이나 속중성자조사에 의하여 모두 묘생육은 저장기간의 연장에 따라서 감소되었고 선량구에서는 그 정도가 더욱 크게 나타났다. 저장온도효과에 대한 묘생육장해는 높은온도(4$0^{\circ}C$)구에서 크게 보였다. 이의 결과로서는 명확한 저장효과를 인정할 수 있었다.
생체정보인 홍채는 지문과 같이 안전하고 유일하며 신뢰성이 다른 생체인증보다 오인식률을 크게 낮출 수 있는 개인정보이다. 그러나 생체인증 특성상 탈취 당하게 된다면 대체가 불가능하다. 실제 홍채 사진을 탈취 후 3d 프린팅 하여 눈이 카메라 앞에 있는 것처럼 작동하도록 한 사례가 있다. 이처럼 고화질의 영상과 사진을 통하여 홍채 유출 가능성이 존재하다. 본 논문에서는 기존의 블러링 기법을 기반으로 한 홍채 영역 마스킹 연구를 보완하여 홍채 마스킹 성능 향상을 제안한다. 본 연구에서 도출된 결과를 토대로 화상회의 프로그램 및 전자기기의 보안에 활용할 수 있을 것으로 기대된다.
본 논문에서는 손목 부착형 카메라의 시점불변 특성을 이용하여 조명 변화에 강인한 손 영역 추출 방법을 제안하고, 추출된 손 영역 정보를 이용하여 손 모양을 인식하는 시스템을 다룬다. 손목 부착형 카메라 장치는 물리적으로 시점불변의 영상을 제공하는 장점이 있으며, 본 논문은 이러한 특성을 적극 활용하여 적응형 히스토그램을 기반으로 베이지안 규칙을 사용하여 손 영역을 추출한다. 사전에 구축된 RGB 히스토그램으로부터 HSV 히스토그램을 생성하고, 현재의 영상으로부터 추출된 손 영역 정보를 이용하여 HSV 히스토그램을 갱신한다. 또한, 사용자 독립모델(User independent model)과 사용자 종속모델(User dependent model)의 장점을 고려하여 사용자가 사용함에 따라 사용자 독립모델에서 사용자 종속모델로 수렴하는 사용자 적응 방법을 제안한다. 제안하는 방법의 인식 성능을 평가하기 위해 16개의 지문자에 대한 인식률을 측정하여 27.91%의 인식률 증가 결과를 얻을 수 있었다.
우리나라 소와 양에 많이 기생 분포하고 있는 Boophilus microplus 진드기의 암놈 성충에 대한 표면 미세구조를 관찰해보고자 주사전자현미경(Model; SEM ISI-DS-130)을 사용하였으며, 영상관찰 및 사진분석 결과 얻어진 형태학적 특징을 요약하면 다음과 같다. 1. 촉수는 길이보다 폭이 넓으며, 전후방으로는 단축되고, 배측방으로는 융기되어 있는 모습을 나타낸다. 촉지에는 흔히 4쌍의 복내측 강모를 가지고 있다. 2. 치열에 있어서의 치식은 대부분 4/4로 표기 되지만 때때로 5/5를 보이는 경우도 있다. 3. 구하편은 배방으로 향한 육각형 모양을 나타내며 잘 발달된 다공역을 볼 수 있다. 4. 자충 성충의 생식기 주변에 생식공을 향하여 펼쳐져 있는 지문양의 수많은 주름을 볼 수 있다. 5. 항문에 있어서는 잘 발달된 강모 1개씩을 가지고 있는 1쌍의 항문내엽을 특징적으로 관찰할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.