• Title/Summary/Keyword: 지리가중회귀

Search Result 46, Processing Time 0.02 seconds

Locally adaptive intelligent interpolation for population distribution modeling using pre-classified land cover data and geographically weighted regression (지표피복 데이터와 지리가중회귀모형을 이용한 인구분포 추정에 관한 연구)

  • Kim, Hwahwan
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.251-266
    • /
    • 2016
  • Intelligent interpolation methods such as dasymetric mapping are considered to be the best way to disaggregate zone-based population data by observing and utilizing the internal variation within each source zone. This research reviews the advantages and problems of the dasymetric mapping method, and presents a geographically weighted regression (GWR) based method to take into consideration the spatial heterogeneity of population density - land cover relationship. The locally adaptive intelligent interpolation method is able to make use of readily available ancillary information in the public domain without the need for additional data processing. In the case study, we use the preclassified National Land Cover Dataset 2011 to test the performance of the proposed method (i.e. the GWR-based multi-class dasymetric method) compared to four other popular population estimation methods (i.e. areal weighting interpolation, pycnophylactic interpolation, binary dasymetric method, and globally fitted ordinary least squares (OLS) based multi-class dasymetric method). The GWR-based multi-class dasymetric method outperforms all other methods. It is attributed to the fact that spatial heterogeneity is accounted for in the process of determining density parameters for land cover classes.

  • PDF

Application of geographical and temporal weighted regression model to the determination of house price (지리시간가중 회귀모형을 이용한 주택가격 영향요인 분석)

  • Park, Saehee;Kim, Minsoo;Baek, Jangsun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.173-183
    • /
    • 2017
  • We investigate the factors affecting the price of apartments using the spatial and temporal data of private real estate prices. The factors affecting the price of apartment were analyzed using geographical and temporal weighted regression (GTWR) model which incorporates the temporal and spatial variation. In contrast to the OLS, a general approach used in previous studies, and GWR method which is most widely used for analyzing spatial data, GTWR considers both temporal and spatial characteristics of the house price, and leads to better description of the house price determination. Year of construction and floor area are selected as the significant factors from the analysis, and the house price are affected by them temporally and geographically.

Environmental Equity Analysis of Fine Dust in Daegu Using MGWR and KT Sensor Data (다중 스케일 지리가중회귀 모형과 KT 측정기 자료를 활용한 대구시 미세먼지에 대한 환경적 형평성 분석)

  • Euna CHO;Byong-Woon JUN
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.218-236
    • /
    • 2023
  • This study attempted to analyze the environmental equity of fine dust(PM10) in Daegu using MGWR(Multi-scale Geographically Weighted Regression) and KT(Korea Telecom Corporation) sensor data. Existing national monitoring network data for measuring fine dust are collected at a small number of ground-based stations that are sparsely distributed in a large area. To complement these drawbacks, KT sensor data with a large number of IoT(Internet of Things) stations densely distributed were used in this study. The MGWR model was used to deal with spatial heterogeneity and multi-scale contextual effects in the spatial relationships between fine dust concentration and socioeconomic variables. Results indicate that there existed an environmental inequity by land value and foreigner ratio in the spatial distribution of fine dust in Daegu metropolitan city. Also, the MGWR model showed better the explanatory power than Ordinary Least Square(OLS) and Geographically Weighted Regression(GWR) models in explaining the spatial relationships between the concentration of fine dust and socioeconomic variables. This study demonstrated the potential of KT sensor data as a supplement to the existing national monitoring network data for measuring fine dust.

An Analysis of the Effects of Customer Characteristics on Sales of Alley Market Area Using Geographically Weighted Regression (지리가중회귀분석을 이용한 고객특성별 골목상권 매출액 영향 연구)

  • Kang, Hyun Mo;Lee, Sang-Kyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.611-620
    • /
    • 2018
  • With the revitalization of alley market area becoming a major goal of the urban regeneration project, an understanding on customer characteristics that affect the sales of alley market areas is needed. As spatial heterogeneity appears to exist in alley market areas, the use of GWR (Geographically Weighted Regression) is required as an alternative to OLS (Ordinary Least Squares) regression. This study analyzes effects of customer characteristics on sales of 1007 alley market areas in Seoul. Comparing R squared and AICc, results show that GWR is better than OLS regression. According to OLS regression, the ratio of female, the ratio of 40's and 50's, the number of employees, the opening rate of establishment, the density of building and the size of alley market area have positive effects on sales, while the ratio of 20's and 30's, the distance of bus stop and that of subway station have negative effects. As a result of comparing local regression coefficients of geographically weighted regression analysis, the ratio of female customers has the greatest effect on the northwestern region, followed by the southwestern region, the central region and the northeastern region. The ratio of 20's and 30's and that of 40's and 50's effect on the southeastern and northeastern regions, and then the southwestern region. It is expected that this study will help to identify marketing target for each alley market area.

건강 관련 삶의 질의 사회인구학적 상관요인에 대한 공간분석

  • Jo, Dong-Gi
    • Korea journal of population studies
    • /
    • v.32 no.3
    • /
    • pp.1-20
    • /
    • 2009
  • 본 연구는 지리정보시스템(GIS)과 지리적 가중 회귀(GWR)를 이용하여 건강 관련 삶의 질(HRQoL)의 사회인구학적 상관요인에 대한 공간분석을 시도한다. 관찰의 독립성과 오차의 동분산성을 가정하는 전통적 회귀분석과 달리, 지리적 가중 회귀분석은 속성정보뿐만 아니라 공간정보를 활용하는 공간분석 기법이다. 분석모형은 건강 관련 삶의 질을 종합적으로 측정하는 EQ-5D를 종속변수로 하고 지역의 사회인구학적 특성인 노령인구비율, 조이혼율, 병상수, 재정자주도를 독립변수로 하여 구성하였다. 종속변수는 질병관리본부에서 실시한 <지역사회건강조사>의 자료를 이용하였고, 독립변수는 통계청 온라인 DB에 수록된 지역별 자료를 이용하였다. 모형을 추정해 본 결과 전반적으로 사회적 특성보다는 노령인구비율이나 조이혼율과 같은 인구학적 특성이 건강 관련 삶의 질에 더 많은 영향을 미치는 것으로 나타났다. 공간적 변이를 고려하는 지역모형은 전역모형에서 드러나지 않았던 중요한 유형을 보여주는데, 노령인구비율 변수와 조이혼율 변수의 지역별 추정치를 지도상으로 살펴본 결과 변수들의 효과가 공간적 위치에 따라 차이를 보인다는 점이 확인되었다. 분석 결과는 또한 지리적 가중 회귀분석이 전통적 회귀분석에 비해 공간적 자기상관의 문제를 극복하고 모형의 부합도를 증가시킨다는 것을 보여준다.

Analysis of the Characteristics of Subway Influence Areas Using a Geographically Weighted Regression Model (지리가중회귀모델을 이용한 역세권 공간구조 특성 분석)

  • Sim, Jun-Seok;Kim, Ho-Yong;Nam, Kwang-Woo;Lee, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.1
    • /
    • pp.67-79
    • /
    • 2013
  • For the sake of the Transit-Oriented Development that has been prominent recently, an analysis of the spatial structures of transit centers, above all, should be carried out at a local level. This study, thus, analyzes the spatial structures of subway influence areas by applying a Geographically Weighted Regression (GWR) model to individual parcels. As a result of the validity analysis of the model, it has turned out that the subway influence areas have different characteristics respectively, and there is spatial heterogeneity even in the same single area. Also, the result of the comparison among models has proved that the GWR model is more adequate than the Ordinary Least Square (OLS) model and $R^2$ has been also increased in the GWR model. Then, the results have been mapped by means of the GIS, which have made it possible to understand the spatial structures at a local level. If the Transit-Oriented Development is fulfilled in consideration of the spatial structural characteristics of the subway influence areas drawn respectively from the model analysis, it will be helpful in adopting effective policies.

An Analysis on the Spatio-temporal Heterogeneity of Real Transaction Price of Apartment in Seoul Using the Geostatistical Methods (공간통계기법을 이용한 서울시 아파트 실거래가 변인의 시공간적 이질성 분석)

  • Kim, Jung Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.75-81
    • /
    • 2016
  • This study focused on exploring real transaction price of apartment and spatial and temporal heterogeneity of the variables that influence real transaction price of apartment from the spatial and temporal perspective. As independent variables that are considered to influence real transaction price of apartment, transport, local characteristics, educational conditions, population, and economic characteristics were taken into account. Accordingly, the influence of independent variables and spatial distribution pattern were analyzed from the global and local aspects. The spatial and temporal changing patterns of real transaction price of apartment which is a dependent variable were analyzed. First, to establish an analysis model, OLS analysis and GWR analysis were conducted, and thereby more efficient and proper model was selected. Secondly, to find spatial and temporal heterogeneity of independent variables with the use of the selected GWR model, Local $R^2$ was used for local analysis. Thirdly, to look into spatial distribution of independent variables, kriging analysis was carried out. Therefore, based on the results, it is considered that it is possible to carry out more microscopic housing submarket analysis and lay the foundation for establishing a policy on real property.

Analysis of Eunpyeong New Town Land Price Using Geographically Weighted Regression (지리가중회귀분석을 이용한 은평뉴타운 지가 분석)

  • Jung, Hyo-jin;Lee, Jiyeong
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.65-73
    • /
    • 2015
  • Newtown Business of Seoul had been performed to reduce deterioration of Gangbuk and economic inequality between Gangnam and Gangbuk. According to this, Eunpyeong-gu was set as test-bed for Newtown business and Newtown business had been completed until 2013. This study aims to analyze the influence of social and economical factors which affect land price using GWR (Geographically Weighted Regression) considered spatial effect. As a result of analysis, GWR model demonstrated a better goodness-of-fit than OLS (Ordinary least square) model typically used in most study. Furthermore, AIC value and Moran's I of residual prove that GWR model is more suitable than OLS model. GWR model enable to explain more detailed than global regression model as coefficient and sign show different value locally. In future, this research will be helpful to develop Eunpyeong-gu considering spatial characters and strength effectiveness of development.

Geographically Weighted Regression on the Environmental-Ecological Factors of Human Longevity (장수의 환경생태학적 요인에 관한 지리가중회귀분석)

  • Choi, Don Jeong;Suh, Yong Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.57-63
    • /
    • 2012
  • The ordinary least square (OLS) regression model is assumed that the relationship between distribution of longevity population and environmental factors to be identical. Therefore, the OLS regression analysis can't explain sufficiently the spatial characteristics of longevity phenomenon and related variables. The geographically weighted regression (GWR) model can be representing the spatial relationship of adjacent area using geographically weighted function. It also characterized which can locally explain the spatial variation of distribution of longevity population by environmental characteristics. From this point of view, this study was performed the comparative analysis between OLS and GWR model for ecological factors of longevity existing studies. In the results, GWR model has higher corresponded to model than OLS model and can be accounting for spatial variability about effect of specific environmental variables.

GIS and Geographically Weighted Regression in the Survey Research of Small Areas (지역 단위 조사연구와 공간정보의 활용 : 지리정보시스템과 지리적 가중 회귀분석을 중심으로)

  • Jo, Dong-Gi
    • Survey Research
    • /
    • v.10 no.3
    • /
    • pp.1-19
    • /
    • 2009
  • This study investigates the utilities of spatial analysis in the context of survey research using Geographical Information System(GIS) and Geographically Weighted Regression (GWR) which take account of spatial heterogeneity. Many social phenomena involve spatial dimension, and with the development of GIS, GPS receiver, and online location-based services, spatial information can be collected and utilized more easily, and thus application of spatial analysis in the survey research is getting easier. The traditional OLS regression models which assume independence of observations and homoscedasticity of errors cannot handle spatial dependence problem. GWR is a spatial analysis technique which utilizes spatial information as well as attribute information, and estimated using geographically weighted function under the assumption that spatially close cases are more related than distant cases. Residential survey data from a Primary Autonomous District are used to estimate a model of public service satisfaction. The findings show that GWR handles the problem of spatial auto-correlation and increases goodness-of-fit of model. Visualization of spatial variance of effects of the independent variables using GIS allows us to investigate effects and relationships of those variables more closely and extensively. Furthermore, GIS and GWR analyses provide us a more effective way of identifying locations where the effect of variable is exceptionally low or high, and thus finding policy implications for social development.

  • PDF