• Title/Summary/Keyword: 지대주-임플란트 연결

Search Result 77, Processing Time 0.021 seconds

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design (국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구)

  • Jang, Mi-Ra;Kwak, Ju-Hee;Kim, Myung-Rae;Park, Eun-Jin;Park, Ji-Marn;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.179-195
    • /
    • 2010
  • In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

Three-dimensional finite element analysis for influence of marginal bone resorption on stress distribution in internal conical joint type implant fixture (변연골 흡수가 내측연결 임플란트 매식체의 응력분포에 미치는 영향)

  • Yun, Mi-Jung;Yoon, Min-Chul;Eom, Tae-Gwan;Huh, Jung-Bo;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • Purpose: The change of the marginal bone around dental implants have significance not only for the functional maintenance but also for the esthetic success of the implant. The purpose of this study was to investigate the load transfer of internal conical joint type implant according to marginal bone resorption by using the three-dimensional finite element analysis model. Materials and methods: The internal conical joint type system was selected as an experimental model. Finite element models of bone/implant/prosthesis complex were constructed. A load of 300 N was applied vertically beside 3 mm of implant axis. Results: The pattern of stress distribution according to marginal bone resorption was similar. The maximum equivalent stress of implant was increase according to marginal bone resorption and the largest maximum equivalent stress was shown at model of 1 mm marginal bone resorption. Although marginal bone loss more than 1mm was occurred increasing of stress, the width of the stress increase was decreasing. Conclusion: According to these results, the exposure of thin neck portion of internal conical joint type implant is most important factor in stress increasing.

Effect of cyclic loading on axial displacement of abutment into implant with internal tapered connection: a pilot study (내측연결형 임플란트에 체결한 지대주의 수직침하에 대하여 반복하중이 미치는 영향)

  • Seol, Hyon-Woo;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Han, Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • Purpose: To evaluate the axial displacement of implant-abutment assembly after cyclic loading in internal tapered connection system. Materials and methods: External butt-joint connection implant and internal tapered connection implant were connected with three types of abutment for cement-retained prostheses, i.e. external type abutment (Ext group), internal tapered 1-piece abutment (Int-1 group), and internal tapered 2-piece abutment (Int-2 group). For each group, 7 implants and abutments were used. The implantabutments assemblies were clamped into the implant holder for vertical loads. A dynamic cyclic loading was applied for $150{\pm}10N$ at a frequency of 4 Hz. The amount of axial displacement of the abutment into the implant was calculated at each cycle of 0, 5, 10, 50, 100, 1,000, 5,000, and 10,000. A repeated measures analysis of variance (ANOVA) for the overall effect of cyclic loading and the pattern analysis by linear mixed model were used for statistical analysis. Differences at P<.05 were considered statistically significant. Results: The mean axial displacement after 10,000 cycles were $0.714{\pm}0.488{\mu}m$ in Ext group, $5.286{\pm}1.604{\mu}m$ in Int-1 group, and $11.429{\pm}1.902{\mu}m$ in Int-2 group. In the pattern analysis, Int-1 and Int-2 group showed continuous axial displacement at 10,000 cycles. There was no declining pattern of axial displacement in the Ext group. Conclusion: The pattern of linear mixed model in Ext group showed no axial displacement. There were continuous axial displacements in abutment-implant assemblies in the Int-1 and Int-2 group at 10,000 cycles. More axial displacement was found in Int-2 group than in Int-1 group.

Influence of bearing surface angle of abutment screw on mechanical stability of joint in the conical seal design implant system (내부 원추형 연결형태 임플란트에서 지대주 나사머리의 좌면각도가 연결부 기계적 안정성에 미치는 영향)

  • Kim, Joo-Hyeun;Huh, Jung-Bo;Yun, Mi-Jung;Kang, Eun-Sook;Heo, Jae-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.206-214
    • /
    • 2014
  • This study is to evaluate how different bearing surface angles of abutment screw affect the mechanical stability of the joint in the conical seal design implant system. Materials and Methods: Internal connection type regular implants, two-piece cemented type abutments and tungsten carbide/carbon-coated titanium alloy abutment screws were selected. Titanium alloy screws with conical ($45^{\circ}$) and flat ($90^{\circ}$) head designs which fit on to abutment were fabricated. The abutments were tightened to implants with 30 Ncm by digital torque gauge. The loading was applied once to the central axis of abutment. The mean axial displacement was measured using micrometer before and after the tightening and loading (n = 5). The abutment was tightened to implants with 30 Ncm and T-shape stainless steel crown was cemented. Then the change in the amount of reverse-torque was measured after the repeated loading to the central axis, and the place 5 mm away from the central axis. Compressive bending and fatigue strength were measured at the place 5 mm away from the central axis (n = 5). Results: Both groups showed the largest axial displacement when abutment screw tightening and total displacement was greater in the flat head group compared to conical head group (P < 0.05). However, there were no significant differences in reverse torque value, compressive bending and fatigue strength (P > 0.05). Conclusion: Within the limitations of this study, the abutment screw head design had no effect on two groups regarding the joint stability, however the conical head design affected the settlement of abutment resulting in the reduced total displacement.

Surface Changes between Implant and Zircoina Abutment after Loading (하중 후 임프란트와 지르코니아 지대주 사이의 표면 변화)

  • Kim, Moon-Soo;Cho, Young-Bum;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.185-195
    • /
    • 2011
  • In this study, titanium abutments and zirconia abutments were connected to each implant in external type implants. After that they were loaded 10000 times with 20Kg as occlusal force. The surface changes of external hexgon part and platform were observed in FESEM image. Viker's hardness of an implant, a titanium abutment and a zirconia abutment were measured respectively. 1. Viker's hardness of an implants, a titanium abutment and a zirconia abutment was $309.80{\pm}11.78$ HV, $318.40{\pm}11.82$ HV, and $1495.30{\pm}16.21$ HV respectively. There was no statistical significance between an implant and a titanium abutment (P>0.05, Anova). However, there was statistical significance between an implant and a zirconia abutment(P<0.05, Anova). 2. The wear was observed at the joint of implant and abutment in both a titanium abutment group and a zirconia abutment group after loading 10,000 times. The zirconia abutment showed more remarkable wear than the titanium one. In conclusion, the wear of external hexagon and platform was much more notable in a zirconia abutment group than a titanium one. It was suggested that it could result from the difference of surface hardness between titanium and zirconia. The wear of junction between an implant and a zirconia abutment becomes more severe, the connection of an implant and an abutment is much more unfit. This is likely to cause loosening and fracture of the abutment screw. so it is considered that the possibility of implant supra-structure failure can be increased.

Clinical accuracy of impression technique using digital superimposition of customized abutment with subgingival margin: A case report (치은연하 변연을 가지는 맞춤형 지대주에서 디지털 중첩기술을 이용한 인상채득술의 임상 적용 증례)

  • Kim, Jin-Wan;Jeong, Chang-Mo;Yun, Mi-Jung;Lee, So-Hyoun;Lee, Hyeonjong;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.169-175
    • /
    • 2020
  • Traditionally, gingival retraction has been performed to obtain customized abutment impressions with subgingival margins of the implant supported prosthesis. However, gingival retraction may have side effects such as gingival recession and bleed, leading to an inaccurate impression. In order to prevent these problems, in this case, the new technique has been introduced; a customized abutment which is designed for superimposition is used. Before the connection of the abutment to the implant fixture, pre-scanned shape data are stored, and then the optical impression without gingival retraction is obtained after connecting to the fixture. The suprastructure is fabricated by superimposing the two data. This technique showed the clinical efficacy of fabricating the implant supported prosthesis with subgingival margin, which satisfied the aesthetics, convenience, and clinically acceptable marginal and internal fit.

Evaluation of reverse torque value of abutment screws on CAD/CAM custom-made implant abutments (CAD/CAM을 이용한 맞춤형 임플란트 지대주의 나사 풀림 토크 평가)

  • Lee, Chang-Jae;Yang, Sung-Eun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.128-134
    • /
    • 2012
  • Purpose: The purpose of this study was to compare the screw joint stability between the CADCAM custom-made implant abutment and the prefabricated implant abutment by measuring the reverse torque value after cyclic loading. Materials and methods: Twelve screw type implants (Implantium, Dentium Co., Seoul, Korea) were embedded in aluminum cylinder with acrylic resin. The implant specimens were equally divided into 3 groups, and connected to the prefabricated titanium abutments (Implantium, Dentium Co., Seoul, Korea), CADCAM custom-made titanium abutments (Myplant, Raphabio Co., Seoul, Korea) and CADCAM custom-made zirconia abutments (Zirconia Myplant, Raphabio Co., Seoul, Korea). The CAD-CAM milled titanium crown (Raphabio Co., Seoul, Korea) was cemented on each implant abutment by resin cement. Before cyclic loading, each abutment screw was tightened to 30 Ncm and the reverse torque value was measured about 30 minutes later. After the crown specimen was subjected to the sinusoidal cyclic loading (30 to 120 N, 500,000 cycles, 2 Hz), postloading reverse torque value was measured and the reverse torque loss ratio was calculated. Kruskal-Wallis test was used for statistical analysis of the reverse torque loss ratio. Results: The CADCAM custom-made titanium abutments presented higher values in reverse torque loss ratio without statistically significant differences than the prefabricated titanium abutments ($P$>.05). Reverse torque loss ratio of the custom-made zirconia abutments was significantly higher compared to that of the prefabricated titanium abutments ($P$=.014). Conclusion: Within the limitation of the present $in-vitro$ study, it was concluded that there was no significant difference in screw joint stability between the CADCAM custom-made titanium abutments and the prefabricated titanium abutments. On the other hand, the CADCAM custom-made zirconia abutments showed lower screw joint stability than prefabricated titanium abutments.

Factors associated with the survival and marginal bone loss of dental implants: a 5-year retrospective study (임플란트의 생존과 변연골 소실에 영향을 미치는 인자들)

  • Song, Eul-Rak;Lee, Jae-Kwan;Um, Heung-Sik;Park, Se-Hwan;Chang, Beom-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.4
    • /
    • pp.280-292
    • /
    • 2016
  • Purpose: The purpose of this study was to compare the long-term survival rate and peri-implant marginal bone loss related to multiple risk factors including the clinician's experience. Materials and Methods: Four hundred twenty implants in 146 patients, who had involved a supportive periodontal therapy program every 3 to 6 months and had follow up data for at least 5 years, were selected as the study group. Peri-implant marginal bone loss, data of demographic, implant and surgical characteristics were collected from peri-apical radiographs and chart review. Implant survival was regarded as the remaining with radiographic marginal bone level in excess of 50% of the fixture length for any reason. Results: The cumulative survival rate after 5 years of loading was 94.9%. In binary logistic regression analysis, smoking status (P = 0.033) and presence of spontaneous cover screw exposure (P < 0.001) were significantly related to 5-year survival of implants. In stepwise multiple regression analysis, smoking status (P < 0.001), type of abutment connection (P < 0.001) and implant surface (P = 0.033) were significantly related to peri-implant marginal bone level. And the year of resident was not statistically related to 5-year implant survival in simple logistic regression analysis (P = 0.171). Conclusion: Smoking status, spontaneous cover screw exposure, type of abutment connection and implant surface might influence the implant success. There was no significant correlation between the year of resident and implant failure.

Radiographic evaluation of computer aided design/computer aided manufacturing (CAD/CAM) customized abutment of implant (CAD/CAM으로 제작된 임플란트 맞춤형 지대주의 방사선학적 평가)

  • Yun, Tae-Gyeong;Lee, Gyeong-Je;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.258-263
    • /
    • 2017
  • Purpose: In this study, the retrospective radiographic study is executed to evaluate amount of bone loss of various conditions in patients using customized abutment for 4 years of follow-up. Materials and methods: The subjects of this study were implant fixed dental prosthesis using CAD/CAM customized abutments. CAD/CAM customized abutment and fixed dental prosthesis were manufactured by the Prosthodontics Department of Chosun University Dental Hospital from August 1, 2011 to July 31, 2012. Radiological assessments were performed on the patients who were treated by the fixed prosthodontics. After each treatment, a retrospective study was performed for a total of 4 years at 3 months, 6 months, 1 year, 2 years, 3 years, and 4 years. Results: As a result of the study, the customized abutment using CAD/CAM showed less bone loss than the results of existing research. There was no statistically significant differences at alveolar bone loss between splinting group and non-splinting group (respectively 0.27 mm, 0.5 mm). Also, there were statistically significant differences at alveolar bone loss in mx. anterior, mx. posterior, mn. anterior and mn. posterior part (respectively 1.37 mm, 0.39 mm, 0.00 mm, 0.30 mm). Conclusion: The customized abutment using CAD/CAM showed less bone loss than the results of existing research, there were statistically significant differences at alveolar bone loss in implant positions.