• Title/Summary/Keyword: 지능형 데이터 분석

Search Result 639, Processing Time 0.027 seconds

A Study on Estimate to Link Travel Time Using Traveling Data of Bus Information System (버스정보시스템(BIS) 운행자료를 이용한 링크통행시간 추정)

  • Lee, Young Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.241-246
    • /
    • 2010
  • This study is to estimate the link travel time of road networks in urban areas utilizing traffic information which is collected throughout the operation of Bus Information System (BIS). BIS, which applies the hightech information technology to an existing bus system, has been developing and operating in many bodies including the local self-government entities. However, a study to consider the technology trend is relatively rare. Even though some useful traffic informations have been collected throughout the operation of an existing BIS, which set limits to the development of a future service of integrated analysis. Accordingly, in this study, a fundamental research is performed for traffic controls in urban areas and providing a traffic information for driver throughout the estimation of link travel time of road networks. The study is proceeded throughout the data collected from the operation of BIS (Bus Information System). The result showed that the patterns of going through traffic were divided up to 2 in the bus travel time in BIS then estimate two link travel time.

A Study on Integrating Wire & Wireless Communication Networks for Reducing Communication Costs in the National ITS Physical Architecture (통신비 절감을 위한 국가 ITS 물리 아키텍쳐 상의 유.무선통신망 통합에 관한 연구)

  • Lee, Bong-Gyou;Hong, In-Gi;Ryu, Seung-Ki;Moon, Hak-Yong
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.2 s.12
    • /
    • pp.77-84
    • /
    • 2004
  • The purpose of this study is to suggest an effective guideline for reducing communication costs and improving qualities of Intelligent Transport Systems (ITS) by totally or partially integrating wireless communication networks between equipments of ITS Centers and Roadside in the National ITS Physical Architecture. We analyzed wire and wireless communication networks such as wireless LAN and satellite communications in the National Highway Traffic Management System (NHTMS) for receiving and transmitting transportation data. Also, we analyzed operation and communication costs to find out right communication networks for ITS. The results of this study will be used to build and operate many other ITS systems including Korea Highway Corporation.

  • PDF

AI Advisor for Response of Disaster Safety in Risk Society (위험사회 재난 안전 분야 대응을 위한 AI 조력자)

  • Lee, Yong-Hak;Kang, Yunhee;Lee, Min-Ho;Park, Seong-Ho;Kang, Myung-Ju
    • Journal of Platform Technology
    • /
    • v.8 no.3
    • /
    • pp.22-29
    • /
    • 2020
  • The 4th industrial revolution is progressing by country as a mega trend that leads various technological convergence directions in the social and economic fields from the initial simple manufacturing innovation. The epidemic of infectious diseases such as COVID-19 is shifting digital-centered non-face-to-face business from economic operation, and the use of AI and big data technology for personalized services is essential to spread online. In this paper, we analyze cases focusing on the application of artificial intelligence technology, which is a key technology for the effective implementation of the digital new deal promoted by the government, as well as the major technological characteristics of the 4th industrial revolution and describe the use cases in the field of disaster response. As a disaster response use case, AI assistants suggest appropriate countermeasures according to the status of the reporter in an emergency call. To this end, AI assistants provide speech recognition data-based analysis and disaster classification of converted text for adaptive response.

  • PDF

A Study on Application of Autonomous Traffic Information Based on Artificial Intelligence (인공지능 기반의 자율형 교통정보 응용에 대한 연구)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.827-833
    • /
    • 2022
  • This study aims to prevent secondary traffic accidents with high severity by overcoming the limitations of existing traffic information collection systems through analysis of traffic information collection detectors and various algorithms used to detect unexpected situations. In other words, this study is meaningful present that analyzing the 'unexpected situation that causes secondary traffic accidents' and 'Existing traffic information collection system' accordingly presenting a solution that can preemptively prevent secondary traffic accidents, intelligent traffic information collection system that enables accurate information collection on all sections of the road. As a result of the experiment, the reliability of data transmission reached 97% based on 95%, the data transmission speed averaged 209ms based on 1000ms, and the network failover time achieved targets of 50sec based on 120sec.

Proposal for the 『Army TIGER Cyber Defense System』 Installation capable of responding to future enemy cyber attack (미래 사이버위협에 대응 가능한 『Army TIGER 사이버방호체계』 구축을 위한 제언)

  • Byeong-jun Park;Cheol-jung Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.157-166
    • /
    • 2024
  • The Army TIGER System, which is being deployed to implement a future combat system, is expected to bring innovative changes to the army's combat methods and comabt execution capability such as mobility, networking and intelligence. To this end, the Army will introduce various systems using drones, robots, unmanned vehicles, AI(Artificial Intelligence), etc. and utilize them in combat. The use of various unmanned vehicles and AI is expected to result in the introduction of equipment with new technologies into the army and an increase in various types of transmitted information, i.e. data. However, currently in the military, there is an acceleration in research and combat experimentations on warfigthing options using Army TIGER forces system for specific functions. On the other hand, the current reality is that research on cyber threats measures targeting information systems related to the increasing number of unmanned systems, data production, and transmission from unmanned systems, as well as the establishment of cloud centers and AI command and control center driven by the new force systems, is not being pursued. Accordingly this paper analyzes the structure and characteristics of the Army TIGER force integration system and makes suggestions for necessity of building, available cyber defense solutions and Army TIGER integrated cyber protections system that can respond to cyber threats in the future.

Evaluation of Accident Prevention Performance of Vision and Radar Sensor for Major Accident Scenarios in Intersection (교차로 주요 사고 시나리오에 대한 비전 센서와 레이더 센서의 사고 예방성능 평가)

  • Kim, Yeeun;Tak, Sehyun;Kim, Jeongyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.96-108
    • /
    • 2017
  • The current collision warning and avoidance system(CWAS) is one of the representative Advanced Driver Assistance Systems (ADAS) that significantly contributes to improve the safety performance of a vehicle and mitigate the severity of an accident. However, current CWAS mainly have focused on preventing a forward collision in an uninterrupted flow, and the prevention performance near intersections and other various types of accident scenarios are not extensively studied. In this paper, the safety performance of Vision-Sensor (VS) and Radar-Sensor(RS) - based collision warning systems are evaluated near an intersection area with the data from Naturalistic Driving Study(NDS) of Second Strategic Highway Research Program(SHRP2). Based on the VS and RS data, we newly derived sixteen vehicle-to-vehicle accident scenarios near an intersection. Then, we evaluated the detection performance of VS and RS within the derived scenarios. The results showed that VS and RS can prevent an accident in limited situations due to their restrained field-of-view. With an accident prevention rate of 0.7, VS and RS can prevent an accident in five and four scenarios, respectively. For an efficient accident prevention, a different system that can detect vehicles'movement with longer range than VS and RS is required as well as an algorithm that can predict the future movement of other vehicles. In order to further improve the safety performance of CWAS near intersection areas, a communication-based collision warning system such as integration algorithm of data from infrastructure and in-vehicle sensor shall be developed.

Toward understanding learning patterns in an open online learning platform using process mining (프로세스 마이닝을 활용한 온라인 교육 오픈 플랫폼 내 학습 패턴 분석 방법 개발)

  • Taeyoung Kim;Hyomin Kim;Minsu Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.285-301
    • /
    • 2023
  • Due to the increasing demand and importance of non-face-to-face education, open online learning platforms are getting interests both domestically and internationally. These platforms exhibit different characteristics from online courses by universities and other educational institutions. In particular, students engaged in these platforms can receive more learner autonomy, and the development of tools to assist learning is required. From the past, researchers have attempted to utilize process mining to understand realistic study behaviors and derive learning patterns. However, it has a deficiency to employ it to the open online learning platforms. Moreover, existing research has primarily focused on the process model perspective, including process model discovery, but lacks a method for the process pattern and instance perspectives. In this study, we propose a method to identify learning patterns within an open online learning platform using process mining techniques. To achieve this, we suggest three different viewpoints, e.g., model-level, variant-level, and instance-level, to comprehend the learning patterns, and various techniques are employed, such as process discovery, conformance checking, autoencoder-based clustering, and predictive approaches. To validate this method, we collected a learning log of machine learning-related courses on a domestic open education platform. The results unveiled a spaghetti-like process model that can be differentiated into a standard learning pattern and three abnormal patterns. Furthermore, as a result of deriving a pattern classification model, our model achieved a high accuracy of 0.86 when predicting the pattern of instances based on the initial 30% of the entire flow. This study contributes to systematically analyze learners' patterns using process mining.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

Analysis of Emerging Geo-technologies and Markets Focusing on Digital Twin and Environmental Monitoring in Response to Digital and Green New Deal (디지털 트윈, 환경 모니터링 등 디지털·그린 뉴딜 정책 관련 지질자원 유망기술·시장 분석)

  • Ahn, Eun-Young;Lee, Jaewook;Bae, Junhee;Kim, Jung-Min
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.609-617
    • /
    • 2020
  • After introducing the industry 4.0 policy, Korean government announced 'Digital New Deal' and 'Green New Deal' as 'Korean New Deal' in 2020. We analyzed Korea Institute of Geoscience and Mineral Resources (KIGAM)'s research projects related to that policy and conducted markets analysis focused on Digital Twin and environmental monitoring technologies. Regarding 'Data Dam' policy, we suggested the digital geo-contents with Augmented Reality (AR) & Virtual Reality (VR) and the public geo-data collection & sharing system. It is necessary to expand and support the smart mining and digital oil fields research for '5th generation mobile communication (5G) and artificial intelligence (AI) convergence into all industries' policy. Korean government is suggesting downtown 3D maps for 'Digital Twin' policy. KIGAM can provide 3D geological maps and Internet of Things (IoT) systems for social overhead capital (SOC) management. 'Green New Deal' proposed developing technologies for green industries including resource circulation, Carbon Capture Utilization and Storage (CCUS), and electric & hydrogen vehicles. KIGAM has carried out related research projects and currently conducts research on domestic energy storage minerals. Oil and gas industries are presented as representative applications of digital twin. Many progress is made in mining automation and digital mapping and Digital Twin Earth (DTE) is a emerging research subject. The emerging research subjects are deeply related to data analysis, simulation, AI, and the IoT, therefore KIGAM should collaborate with sensors and computing software & system companies.

A Implement of Integrated Management Systems for User Fraud Protection and Malware Infection Prevention (악성코드 감염방지 및 사용자 부정행위 방지를 위한 통합 관리 시스템 구현)

  • Min, So-Yeon;Cho, Eun-Sook;Jin, Byung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8908-8914
    • /
    • 2015
  • The Internet continues to grow and develop, but there are going to generate a variety of Internet attacks that exploit it. In the initial Internet environment, the attackers maliciously exploited Internet environments for ostentations and hobbies. but these days many malicious attempts purpose the financial gain so systematic and sophisticated attacks that are associated with various crimes are occurred. The structures, such as viruses and worms were present in the form of one source multi-target before. but recently, APT(Advanced Persistent Threat, intelligent continuous attacks) in the form of multi-source single target is dealing massive damage. The performance evaluation analyzed whether to generate audit data and detect integrity infringement, and false positives for normal traffic, process detecting and blocking functions, and Agent policy capabilities with respect to the application availability.