• Title/Summary/Keyword: 지능형 데이터 분석

Search Result 639, Processing Time 0.031 seconds

Development of Intelligent Job Classification System based on Job Posting on Job Sites (구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.123-139
    • /
    • 2019
  • The job classification system of major job sites differs from site to site and is different from the job classification system of the 'SQF(Sectoral Qualifications Framework)' proposed by the SW field. Therefore, a new job classification system is needed for SW companies, SW job seekers, and job sites to understand. The purpose of this study is to establish a standard job classification system that reflects market demand by analyzing SQF based on job offer information of major job sites and the NCS(National Competency Standards). For this purpose, the association analysis between occupations of major job sites is conducted and the association rule between SQF and occupation is conducted to derive the association rule between occupations. Using this association rule, we proposed an intelligent job classification system based on data mapping the job classification system of major job sites and SQF and job classification system. First, major job sites are selected to obtain information on the job classification system of the SW market. Then We identify ways to collect job information from each site and collect data through open API. Focusing on the relationship between the data, filtering only the job information posted on each job site at the same time, other job information is deleted. Next, we will map the job classification system between job sites using the association rules derived from the association analysis. We will complete the mapping between these market segments, discuss with the experts, further map the SQF, and finally propose a new job classification system. As a result, more than 30,000 job listings were collected in XML format using open API in 'WORKNET,' 'JOBKOREA,' and 'saramin', which are the main job sites in Korea. After filtering out about 900 job postings simultaneously posted on multiple job sites, 800 association rules were derived by applying the Apriori algorithm, which is a frequent pattern mining. Based on 800 related rules, the job classification system of WORKNET, JOBKOREA, and saramin and the SQF job classification system were mapped and classified into 1st and 4th stages. In the new job taxonomy, the first primary class, IT consulting, computer system, network, and security related job system, consisted of three secondary classifications, five tertiary classifications, and five fourth classifications. The second primary classification, the database and the job system related to system operation, consisted of three secondary classifications, three tertiary classifications, and four fourth classifications. The third primary category, Web Planning, Web Programming, Web Design, and Game, was composed of four secondary classifications, nine tertiary classifications, and two fourth classifications. The last primary classification, job systems related to ICT management, computer and communication engineering technology, consisted of three secondary classifications and six tertiary classifications. In particular, the new job classification system has a relatively flexible stage of classification, unlike other existing classification systems. WORKNET divides jobs into third categories, JOBKOREA divides jobs into second categories, and the subdivided jobs into keywords. saramin divided the job into the second classification, and the subdivided the job into keyword form. The newly proposed standard job classification system accepts some keyword-based jobs, and treats some product names as jobs. In the classification system, not only are jobs suspended in the second classification, but there are also jobs that are subdivided into the fourth classification. This reflected the idea that not all jobs could be broken down into the same steps. We also proposed a combination of rules and experts' opinions from market data collected and conducted associative analysis. Therefore, the newly proposed job classification system can be regarded as a data-based intelligent job classification system that reflects the market demand, unlike the existing job classification system. This study is meaningful in that it suggests a new job classification system that reflects market demand by attempting mapping between occupations based on data through the association analysis between occupations rather than intuition of some experts. However, this study has a limitation in that it cannot fully reflect the market demand that changes over time because the data collection point is temporary. As market demands change over time, including seasonal factors and major corporate public recruitment timings, continuous data monitoring and repeated experiments are needed to achieve more accurate matching. The results of this study can be used to suggest the direction of improvement of SQF in the SW industry in the future, and it is expected to be transferred to other industries with the experience of success in the SW industry.

An analysis of public perception on Artificial Intelligence(AI) education using Big Data: Based on News articles and Twitter (빅데이터 분석을 통해 본 AI교육에 대한 사회적 인식: 뉴스기사와 트위터를 중심으로)

  • Lee, Sang-Soog;Yoo, Inhyeok;Kim, Jinhee
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 2020
  • The purpose of this study is to understand the public needs for AI education actively promoted and supported by the current government. In doing so, 11 metropolitan news articles and Twitter posts regarding AI education that have been posted from January 1, 2018 to December 31, 2019 were collected. Then, word frequency analysis using TF(Term Frequency) method and LDA(Latent Dirichlet Allocation) method of topic modeling analysis were conducted. The topics of the news articles turn out to be a macroscopic policy support such as 'training female manpower in the AI field' and 'curriculum reform of university and K-12', whereas the topics of twitter delineate more detailed social perception on future society, such as future competencies and pedagogical methods, including 'coexistence with intelligent robots', 'coding education', and 'humane education competence development'. The findings are expected to be used to suggest the implications for the composition and management of AI curriculum as well as the basic framework of human resources development in the future industry.

Extracting Real-Time Traffic Information By Spatio-Temporal Image Analysis (시공간 영상분석에 의한 실시간 교통정보 산출기법)

  • Lee, Young-Jae;Lee, Dae-Ho;Park, Young-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.4
    • /
    • pp.11-19
    • /
    • 2000
  • Real-time extraction of traffic information such as the number of vehicles passing, speed, road-occupancy rate, distance between vehicles, and vehicle types from the traffic scenes acquired from the camera on the road, is a core component of the intelligent transportation system(lTS) We present a scheme of extracting the traffic informations based on the spatio-temporal image analysis, which is robust to the variation of weather conditions and the shades. The images of two detection regions for each traffic lane are classified into one of the three categories: the road, the vehicle, and the shade, using the statistical and structural features Quantitative traffic informations are retrieved by analysing the two spatio-temporal images. Since only the local images of detection regions are processed, the real-time operation of more than 30 frames per second is realized while ensuring the detection performance robust to the operating condition.

  • PDF

Design and Data Analysis of Signal Measurement System for In-Building Propagation Characteristics based on Variable Short Signature Sequences (가변의 짧은 시그니처 시퀀스 기반 건물 내 메시지 전달특성 측정시스템 설계)

  • Kim, Jeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.10-14
    • /
    • 2015
  • Recently, the collection of the sensor data and its analysis become important as the smart buildings equipped with the various sensors appear as a usual scene. The interconnection through the wire cable among the sensors is indispensible because of the information collections such as the temperature, the humidity, and the luminance in the rooms and the hallways for the effective management of the in-building energies. However, these interconnections through the cabling will be very costly, time-consuming, and a difficult task since they will cause some damages to the buildings. Therefore, the interconnections through the unwired connections are required in terms of the deployment effectiveness such as time and cost In this paper, the design and the short sequence operation appropriateness are confirmed through the simulation of the signal measurement system for in-building propagation characteristics based on short signature sequence and the analysis of the system characteristics based on the false alarm probability is performed thereafter.

Comparative Analysis on Smart Features of IoT Home Living Products among Korea, China and Japan (한·중·일 IoT홈 가전생활재의 지능형 기능성 비교연구)

  • Zhang, Chun Chun;Lee, Yeun Sook;Hwang, Ji Hye;Park, Jae Hyun
    • Design Convergence Study
    • /
    • v.15 no.2
    • /
    • pp.237-250
    • /
    • 2016
  • Along with rapid development, progress of the network technology and digital information technology, human are stepping into the intelligent society of internet. Thereby the quality of living environment and working environment are keep improving. Under the big background of internet era, the timeliness and convenience of smart home system has been improved greatly. While lots of smart products have gradually penetrated into people's daily life. The household appliances are among most popular ones. This paper is intended to compare smart features of household living products among most representative brands in China, Japan and South Korea. The smart features include self-learning, self-adapting, self-coordinating, self-diagnosing, self-inferring, self-organizing, and self adjusting. As result, most smart features of these products showed great similarity. While some features were dominated according to countries such as remote control feature in Korea, energy saving feature in Japan, and one button operation feature in China.

A Study of Aggressive Driver Detection Combining Machine Learning Model and Questionnaire Approaches (기계학습 모델과 설문결과를 융합한 공격적 성향 운전자 탐색 연구)

  • Park, Kwi Woo;Park, Chansik
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • In this paper, correlation analysis was performed between questionnaire and machine learning based aggressive tendency measurements. this study is part of a aggressive driver detection using machine learning and questionnaire. To collect two types tendency from questionnaire and measurements system, we constructed experiments environments and acquired the data from 30 drivers. In experiment, the machine learning based aggressive tendency measurements system was designed using a driver behavior detection model. And the model was constructed using accelerate and brake position data and hidden markov model method through supervised learning. We performed a correlation analysis between two types tendency using Pearson method. The result was represented to high correlation. The results will be utilize for fusing questionnaire and machine learning. Furthermore, It is verified that the machine learning based aggressive tendency is unique to each driver. The aggressive tendency of driver will be utilized as measurements for advanced driver assistance system such as attention assist, driver identification and anti-theft system.

Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing (클라우드 기반 한국형 스마트 온실 연구 플랫폼 설계 방안)

  • Baek, Jeong-Hyun;Heo, Jeong-Wook;Kim, Hyun-Hwan;Hong, Youngsin;Lee, Jae-Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.

A Study on the Implementation of Intelligent Navigational Risk Assessment System for High-risk Vessel using IoT Sensor Gateway (IoT 센서연계장치를 이용한 고위험선박의 지능형 운항위험 분석 시스템 개발에 대한 연구)

  • Kim, Do-Yeon;Kim, Kil-Yong;Park, Gyei-Kark;Jeong, Jung-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2016
  • In the midst of continuing international recession, the rate of maritime traffic and marine leisure markets are consistently growing. The Republic of Korea controls the marine traffic volume through vessel traffic centers and various other management facilities. Nevertheless, the continuous growth and complexity of marine traffic is resulting in repeated occurrences of marine accidents. Recovery is very difficult in cases of human injuries or deaths caused by marine accidents due to its nature, and the scale of marine accidents is also becoming greater with advanced ship building technologies. Passenger ships, oil tankers, and other such vessels used for specific purposes requires a more detailed navigational status surveillance and analysis, and numerous research has been conducted with an objective for monitoring such special purpose vessels. However, the data elements transmitted from the ocean to the shore station are limited to AIS and ARPA. We are implementing IoT ship sensor collection and a syncing system capable of transmitting various ship sensing data to the shore station, and also proposing a Safe Navigation Status Analysis System utilizing the collected data.

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.

Study on the Operational Effect of Real-time Traffic Signal Control Using the Data from Smart Instersections (스마트교차로 데이터를 활용한 실시간 교통신호제어 운영 효과 분석)

  • Sangwook Lee;Bobae Jeon;Seok Jin Oh;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.48-62
    • /
    • 2023
  • Recently, smart intersections have been installed in many intelligent transportation system projects, but few cases use them for traffic signal operations besides traffic volume collection and statistical analysis. In order to respond to chronic traffic congestion, it is necessary to implement efficient signal operations using data collected from smart intersections. Therefore, this study establishes a procedure for operating a real-time traffic signal control algorithm using smart intersection data for efficient traffic signal operations and improving the existing algorithm. Effect analysis confirmed that intersection delays are reduced and the section speed improves when the offset is adjusted.