• Title/Summary/Keyword: 지능형 데이터 분석

Search Result 639, Processing Time 0.03 seconds

User Modeling Method for Dynamic-FSM (Dynamic-FSM을 위한 사용자 모델링 방법)

  • Yun Tae-Bok;Park Du-Gyeong;Park Gyo-Hyeon;Lee Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.317-321
    • /
    • 2006
  • 게임의 재미요소를 증대 시키고, 게임 생명주기(Life-Cycle)를 늘어나게 하기 위해 다양한 방법이 연구 중이다. 현실감 있는 그래픽 효과와 뛰어난 음향 효과 등과 함께 게임 플레이어의 게임 스타일이 반영된 게임을 만들기 위한 방법이 대표적이 예라 할 수 있다. 그 중 게임 플레이어의 스타일을 게임에 다시 이용하기 위해서는 플레이어의 인지과정이 요구되며, 인지된 결과를 이용하여 플레이어를 모델링(User Modeling)한다. 하지만, 게임의 종류와 특성에 따라 다양한 게임이 존재하기 때문에 플레이어를 모델링하기 어렵다는 문제를 가지고 있다. 본 논문에서는 게임에서 정의된 FSM(Finite State machine)을 이용하여 플레이어가 선택한 행동 패턴을 분석하고 적용하는 방법과 다양한 게임에서 이용 할 수 있는 스크립트 형태의 NPC 행동 패턴 변경 방법을 제안한다. 플레이어의 데이터를 분석하여 얻은 결과는 FSM을 변경하여 새로운 행동을 보이는 NPC(Non-Player Characters)를 생성하는데 사용되며, 이 캐릭터는 게임의 특성과 플레이어의 최신 행동 패턴 경향을 학습한 적용형 NPC라 할 수 있다. 실험을 통하여 사용자의 행동과 유사한 패턴을 보이는 NPC의 생성을 확인할 수 있었으며, 게임에서 상대적인 또는 적대적인 캐릭터로 유용하게 사용 될 수 있다.

  • PDF

Development of Water Quality Management System in Reservoirs Using Expert System and GIS (전문가시스템과 GIS를 이용한 저수지 수질 정보시스템 개발)

  • Lee, Ju-Seung;Goh, Hong-Seok;Goh, Nam-Young;Cho, Min-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.71-80
    • /
    • 2005
  • Recently, water quality problems are emerging as important social issues since water quality in rivers and lakes are significantly deteriorated. Thus, an accurate prediction system on reservoir water quality is required, as well as an integrated system which can provide a solution for taking away contaminated materials. This research aims to develop an intelligent decision support system, which uses a GIS enabling management and spatial analysis. The developed system is a prototype that can be applied into real spot. This research area includes the following main subjects; system analysis and design, geometry data collection and database implementation, data acquisition and analysis on reservoir water quality, interface design and development GIS, and development of an expert system for water quality forecasting by WASPS.

  • PDF

Threats according to the Type of Software Updates and White-List Construction Scheme for Advanced Security (소프트웨어 업데이트 유형별 위협요소와 안전성 강화를 위한 화이트리스트 구성 방안)

  • Lee, Daesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1369-1374
    • /
    • 2014
  • In case of APT attacks, the update server is being used as a means of dissemination, the update program is running malicious code or data in applications such as anti-virus signature is vulnerable to manipulation, SW Update threat identification and prevention measures are urgently required. This paper presents a natiional and international SW update structure, update process exploits and response measures to examine, Through the extraction/analysis of a domestic famous SW update log, we are willing to select the necessary component of the normal program update to identify a white list.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

ICT and the Changing Nature of Work: Work Fragmentation (ICT와 업무의 변화 - 일의 파편화 관점에서 -)

  • Lee, Seyoon;Park, Jun-Gi;Lee, Jungwoo
    • Informatization Policy
    • /
    • v.21 no.1
    • /
    • pp.35-56
    • /
    • 2014
  • Information and communication technologies(ICT) allow and force people to work anywhere, anytime using remote databases and application systems available in real-time twenty four hours a day and seven days a week. With the real time nature of ICT, individual work is becoming more and more fragmented. Instead of working on a similar task repeatedly, individuals are required to respond to e-mails and inquiries through social networks, work on planning documents, work on presentation documents, work on spreadsheets, input necessary data on company databases, generate necessary reports from the database, run teleconference, etc., all maybe in a day's work. Work fragmentation may impact negatively on productivity as the flow is interrupted, but it may increase the productivity by allowing people to handle multiple tasks in a shorter time period. This study explores the types of work fragmentation and their characteristics. An online survey was administered to collect data about work fragmentation and work characteristics including autonomy, complexity, flexibility, usage of ICT, etc. 300 cases were used in the analysis. Analysis of k-mean cluster indicated four different types of work fragmentation: concentrated, temporally distributed, spatially distributed, and fully fragmented.

A Robust Object Detection and Tracking Method using RGB-D Model (RGB-D 모델을 이용한 강건한 객체 탐지 및 추적 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.61-67
    • /
    • 2017
  • Recently, CCTV has been combined with areas such as big data, artificial intelligence, and image analysis to detect various abnormal behaviors and to detect and analyze the overall situation of objects such as people. Image analysis research for this intelligent video surveillance function is progressing actively. However, CCTV images using 2D information generally have limitations such as object misrecognition due to lack of topological information. This problem can be solved by adding the depth information of the object created by using two cameras to the image. In this paper, we perform background modeling using Mixture of Gaussian technique and detect whether there are moving objects by segmenting the foreground from the modeled background. In order to perform the depth information-based segmentation using the RGB information-based segmentation results, stereo-based depth maps are generated using two cameras. Next, the RGB-based segmented region is set as a domain for extracting depth information, and depth-based segmentation is performed within the domain. In order to detect the center point of a robustly segmented object and to track the direction, the movement of the object is tracked by applying the CAMShift technique, which is the most basic object tracking method. From the experiments, we prove the efficiency of the proposed object detection and tracking method using the RGB-D model.

An Incentive Mechanism Design for Trusted Data Management on Internet of Vehicle with Decentralized Approach (분산형 접근 방식을 적용한 차량 인터넷에서 신뢰할수 있는 데이터 관리를 위한 인센티브 메커니즘 설계)

  • Firdaus, Muhammad;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.889-899
    • /
    • 2021
  • This paper proposes a reliable data sharing scheme on the internet of vehicles (IoV) by utilizing blockchain technology for constructing a decentralized system approach. In our model, to maintain the credibility of the information messages sent by the vehicles to the system, we propose a reputation rating mechanism, in which neighboring vehicles validate every received information message. Furthermore, we incorporate an incentive mechanism based on smart contracts, so that vehicles will get certain rewards from the system when they share correct traffic information messages. We simulated the IoV network using a discrete event simulator to analyze network performance, whereas the incentive model is designed by leveraging the smart contract available in the Ethereum platform.

Development of a Spectrum Analysis Software for Multipurpose Gamma-ray Detectors (감마선 검출기를 위한 스펙트럼 분석 소프트웨어 개발)

  • Lee, Jong-Myung;Kim, Young-Kwon;Park, Kil-Soon;Kim, Jung-Min;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • We developed an analysis software that automatically detects incoming isotopes for multi-purpose gamma-ray detectors. The software is divided into three major parts; Network Interface Module (NIM), Spectrum Analysis Module (SAM), and Graphic User Interface Module (GUIM). The main part is SAM that extracts peak information of energy spectrum from the collected data through network and identifies the isotopes by comparing the peaks with pre-calibrated libraries. The proposed peak detection algorithm was utilized to construct libraries of standard isotopes with two peaks and to identify the unknown isotope with the constructed libraries. We tested the software by using GammaPro1410 detector developed by NuCare Medical Systems. The results showed that NIM performed 200K counts per seconds and the most isotopes tested were correctly recognized within 1% error range when only a single unknown isotope was used for detection test. The software is expected to be used for radiation monitoring in various applications such as hospitals, power plants, and research facilities etc.

Analysis of the AI Convergence Science Education Research Trends Using Text Mining (텍스트 마이닝을 활용한 AI융합 과학교육 연구 동향 분석)

  • Lee, Ju-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.4
    • /
    • pp.544-553
    • /
    • 2024
  • The purpose of this study was to analyze the trends of research focusing on artificial intelligence and the science education and derive important problems, topics, and research trends,. The analysis of the AI convergence science education research trends targeted 83 articles on the awareness of artificial intelligence, research trends, design, development, and application of the education programs related to artificial intelligence. The analysis data was collected through the RISS. The collected data was refined using Excel and Textom, and the main keywords were identified and analyzed through the frequency analysis and keyword network analysis. The connection centrality of the keywords was confirmed using the CONCOR analysis. The research results showed that the AI convergence science education research was expanding in both quantitative and qualitative aspects, and that the main keywords were identified as 'AI,' 'AI convergence education,' 'AI convergence science education,' 'AI education,' 'science education,' 'science,' 'machine learning,' 'elementary school,' 'generative AI,' and 'educational program.' Through the connection centrality analysis and CONCOR analysis, it was confirmed that the clusters were formed around the 'naming,' 'content and method,' 'elementary,' and 'data' in the AI integrated science education. Based on the results, the main topics and trends of the research integrating artificial intelligence into the science subjects were derived and the implications and directions for follow-up research were set forth.

433 MHz Radio Frequency and 2G based Smart Irrigation Monitoring System (433 MHz 무선주파수와 2G 통신 기반의 스마트 관개 모니터링 시스템)

  • Manongi, Frank Andrew;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2020
  • Agriculture is the backbone of the economy of most developing countries. In these countries, agriculture or farming is mostly done manually with little integration of machinery, intelligent systems and data monitoring. Irrigation is an essential process that directly influences crop production. The fluctuating amount of rainfall per year has led to the adoption of irrigation systems in most farms. The absence of smart sensors, monitoring methods and control, has led to low harvests and draining water sources. In this research paper, we introduce a 433 MHz Radio Frequency and 2G based Smart Irrigation Meter System and a water prepayment system for rural areas of Tanzania with no reliable internet coverage. Specifically, Ngurudoto area in Arusha region where it will be used as a case study for data collection. The proposed system is hybrid, comprising of both weather data (evapotranspiration) and soil moisture data. The architecture of the system has on-site weather measurement controllers, soil moisture sensors buried on the ground, water flow sensors, a solenoid valve, and a prepayment system. To achieve high precision in linear and nonlinear regression and to improve classification and prediction, this work cascades a Dynamic Regression Algorithm and Naïve Bayes algorithm.