• Title/Summary/Keyword: 지능형 데이터 분석

Search Result 639, Processing Time 0.031 seconds

Intelligent Diagnosis System Based on Fuzzy Classifier (퍼지 분류기 기반 지능형 차단 시스템)

  • Sung, Hwa-Chang;Park, Jin-Bae;So, Jea-Yun;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.534-539
    • /
    • 2007
  • In this paper, we present the development of an intelligent diagnosis system for detecting faults of the low voltage wires. The wire detecting system based on the Time-Frequency Domain Reflectometry (TFDR) algorithm shows the condition of the wires. We analyze the reflected signal which is sent from the wire detecting system and classify the fault type of the wires by using the intelligent diagnosis system. Through the TFDR, generally, the conditions of the wires are classified into the three types - damage, open and short. In order to classify the fault type efficiently, we use the fuzzy classifier which is represented as IF-THEN rules. Finally, we show the utility of the proposed algorithm by performing the simulation which is based on the data of the coaxial cable.

Comparison of Intelligent Color Classifier for Urine Analysis (요 분석을 위한 지능형 컬러 분류기 비교)

  • Eom Sang-Hoon;Kim Hyung-Il;Jeon Gye-Rok;Eom Sang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1319-1325
    • /
    • 2006
  • Urine analysis is basic test in clinical medicine using visual examination by expert nurse. Recently, this test is measured by automatic urine analysis system. But, this system has different results by each instrument. So, a new classification algorithm is required for accurate classify and urine color collection. In this paper, a intelligent color classifier of urine analysis system was designed using neural network algorithm. The input parameters are three stimulus(RGB) after preprocessing using normalization. The fuzzy inference and neural network ware constructed for classify class according to 9 urine test items and $3{\sim}7$ classes. The experiment material to be used a standard sample of medicine. The possibility to adapt classifier designed for urine analysis system was verified as classifying measured standard samples and observing classified result. Of many test items, experimental results showed a satisfactory agreement with test results of reference system.

Study for Human Behavior Classification using Soft-Computing Method (소프트 컴퓨팅에 의한 인간행위 분류에 관한 연구)

  • Jeong, Tae-Min;Choe, U-Gyeong;Kim, Seong-Ju;Kim, Yong-Min;Ha, Sang-Hyeong;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.257-260
    • /
    • 2007
  • 인간의 행위에는 외부환경으로부터 감각정보가 입력되어 반응되는 무의식적인 행동과 뇌에 의한 추론과 인지에 의한 행동으로 분류할 수 있다. 동일한 환경 조건하에서의 인간 행위분류의 통해 활용 적합한 응용프로그램을 개발하여 적용하여 본다. 본 논문에서는 인간의 몸에 부착하여 움직임을 데이터로 분석할 수 있도록 행동인식 시스템을 개발하였다. 인간행동의 인식패턴을 분류하기 위해 Soft-Computing Algorithm을 행위 추출센서에 적용시킨 단독 시스템을 개발하여 센서모듈로부터 인간의 행동 패턴을 분류할 수 있도록 한다. 이러한 센서모듈은 3축 각속도 및 가속도 센서를 부착시킨 모듈로 Micro-Processor를 사용하여 모듈을 구성하였으며, 구축된 모듈은 인간의 몸에 착용하여 인간의 움직임을 디지털 데이터로 변환된다. 변환된 데이터를 무선통신을 통해 워크스테이션에 전달되어 인간행위에 대한 패턴분류 알고리즘 처리가 가능하며, 추출된 데이터를 기반으로 인간의 행동분석과 교정이 이루어 질 수 있도록 한다. 본 논문에서의 최종 시나리오는 운전자의 행동패턴을 이용한 행동 감지 및 서비스 시스템을 구성하는 데에 목적을 둔다.

  • PDF

The Study on Load Forecasting Using Artificial Intelligent Algorithm (지능형 알고리즘을 이용한 전력 소비량 예측에 관한 연구)

  • Lee, Jae-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.720-722
    • /
    • 2009
  • Optimal operation of electric power generating plants is very essential for any power utility organization to reduce input costs and possibly the prices of electricity in general. This paper developed models for load forecasting using neural networks approach. This model is tested using actual load data of the Busan and weather data to predict the load of the Busan for one month in advance. The test results showed that the neural network forecasting approach is more suitable and efficient for a forecasting application.

  • PDF

Strengthening Big Data Privacy through homomorphic encryption (동형암호화를 통한 빅데이터 privacy 강화 방안)

  • Oh, Minseok
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.139-141
    • /
    • 2018
  • 최근 IoT, SNS 등이 확대 되면서 대규모의 빅데이터가 생산되고 있고, 이러한 빅데이터는 AI 등 지능형 기술과 결합하여 다양한 분야의 예측과 의사결정을 지원하며 새로운 가치를 창출하고 있다. 그러나, 이러한 활용에 있어 가장 걸림돌이 되는 것은 빅데이터에 내제되어 있는 개인정보에 대한 위협이다. 본연구에서는 빅데이터에 내제되어 있는 개인정보를 보호하면서도 빅데이터의 효과적인 분석과 활용을 가능하게 할 수 있는 동형암호(homomorphic encryption)을 살펴보고 빅데이터의 프라이버시 강화 방안과 이를 통한 빅데이터의 활용방안에 대해 연구하고 향 후 과제 등에 대해 고찰해 보도록 한다.

Environment noise analysis for Security system with Audio capability (오디오 취득 기반의 방범용 시스템을 위한 환경 잡음 분석)

  • Park, Ju-Hyun;Lee, Hye-In;Seo, Ji-Hun;Kim, Kwang-yong;Chung, Il-Gu;Lee, Scok-Pil
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.81-84
    • /
    • 2013
  • 최근 범죄의 급격한 증가로 인해 사회적 불안감이 고조되고 있다. 이에 사람들의 범죄 예방에 대한 관심이 높아지고 있으며 지능형 CCTV의 발전에도 큰 영향을 미치고 있다. 본 논문에서는 일상적인 환경 잡음 데이터를 분석하였다. 수행 방법은 환경잡음 데이터를 주파수 영역으로 추출하였다. 향후 환경 잡음 데이터를 분석한 결과를 토대로 위험상황을 감지할 수 있도록 하여 보다 효과적인 범죄 예방을 기대한다.

  • PDF

Performance Analysis of the Dedicated Short Range Communication System (OFDM 방식의 차세대 단거리전용통신(DSRC) 시스템의 성능 분석)

  • Kim, Man-Ho;Kang, Heau-Jo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.223-226
    • /
    • 2005
  • 본 논문에서는 지능형 교통망 시스템 서비스에 사용하는 5.8GHz 대역에서 OFDM을 이용한 단거리 전용 통신 시스템의 성능을 분석하였다. 현재의 DSRC 시스템은 1Mbps 이상의 데이터 서비스가 어려울 것으로 예상되므로 개선도니 변복조방식이 요구된다. OFDM(orthogonal frequency division multiplexing) 방식은 보호구간의 삽입을 통하여 ISI를 방지할 수 있으므로 고속 데이터 전송에 적합하다. 따라서, 본 논문에서는 데이터 변조 방식으로는 IEEE 802.11a에 근거한 부 반송파의 수가 64개인 QPSK변조 방식을 사용하는 OFDM 시스템을 모델링 하고, 도플러 천이 효과를 고려한 Clark & Gans 페이딩 환경에서 성능을 분석하였다. 또한 페이딩 환경에서는 성능의 열화 정도가 크기 때문에 이를 극복하기 위해 채널 예측기를 사용하여 채널 응답을 근사적으로 예측${\cdot}$보상하였다.

  • PDF

Implementation of a Job Prediction Program and Analysis of Vocational Training Evaluation Data Based on Artificial Intelligence (인공지능(AI) 기반 직업 훈련 평가 데이터 분석 및 취업 예측 프로그램 구현)

  • Jae-Sung Chun;Il-Young Moon
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.409-414
    • /
    • 2024
  • This paper utilizes artificial intelligence to analyze vocational training evaluation data for people with disabilities and selects the optimal prediction model using various machine learning algorithms. It predicts the job categories most likely to employ trainees based on data such as gender, age, education level, type of disability, and basic learning abilities. The goal is to design customized training programs based on these predictions to enhance training efficiency and employment success rates.

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

Innovation Systems for Industrial Safety in 4th Industrial Evolution (4차 산업혁명시대의 산업안전혁신시스템)

  • Suh, Yongyoon;Lee, Sanghoon
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2017.11a
    • /
    • pp.1271-1276
    • /
    • 2017
  • 산업이 고도화되고 기술발전이 가속화되고 있지만, 생산현장에서의 사고와 재해는 아직까지도 지속적으로 발생하고 있다. 이는 시스템의 대규모화, 복잡화, 다양화 등에 따라 나타나는 불안전한 상태(unsafe condition)와 근로자의 안전불감증, 낮은 학습효과, 안전문화 비활성화 등을 포함하는 불안전한 행동(unsafe behavior)에 기인한다. 최근 4차 산업혁명이 대두되면서, 인간과 기계 시스템 사이의 상호작용이 활발해지고, 데이터 가용성과 알고리즘 우수성이 확보되면서, 산업현장에서도 시스템과 공정안전을 위해 최신 기술을 활용하려는 시도가 시작되고 있다. 궁극적으로는, 품질 관리, 고장분석, 작업환경관리, 보건관리 등 생산관리의 다양한 범위에 새로운 산업안전혁신을 가져올 것으로 기대된다. 본 논문에서는 사물인터넷, 드론, 인공지능 등 4차 산업혁명 시대의 하드웨어와 소프트웨어의 결합의 사례를 통해 안전한 생산현장은 물론 신뢰성할 수 있는 공공 및 사회를 위한 지능형 시스템 구축의 필요성을 제시하고자 한다.

  • PDF