• Title/Summary/Keyword: 지능형 교통망

Search Result 65, Processing Time 0.025 seconds

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

Stacked Pad Area Away Package Modules for a Radio Frequency Transceiver Circuit (RF 송수신 회로의 적층형 PAA 패키지 모듈)

  • Jee, Yong;Nam, Sang-Woo;Hong, Seok-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.10
    • /
    • pp.687-698
    • /
    • 2001
  • This paper presents a three dimensional stacked pad area away (PAA) package configuration as an implementation method of radio frequency (RF) circuits. 224MHz RF circuits of intelligence traffic system(ITS) were constructed with the stacked PAA RF pakage configuration. In the process of manufacturing the stacked PAA RF pakage, RF circuits were partitioned to subareas following their function and operating frequency. Each area of circuits separated to each subunits. The operating characteristics of RF PAA package module and the electrical properties of each subunits were examined. The measurement of electrical parameters for solder balls which were interconnects for stacked PAA RF packages showed that the parasitic capacitance and inductance were 30fF and 120pH, respectively, which might be negligible in PAA RF packaging system. HP 4396B network/spectrum analyzer revealed that the amplification gain of a receiver and transmitter at 224 MHz was 22dB and 27dB, respectively. The gain was 3dB lower than designed values. The difference was probably generated from fabrication process of the circuits by employing commercial standard

  • PDF

Forecasting of Motorway Path Travel Time by Using DSRC and TCS Information (DSRC와 TCS 정보를 이용한 고속도로 경로통행시간 예측)

  • Chang, Hyun-ho;Yoon, Byoung-jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1033-1041
    • /
    • 2017
  • Path travel time based on departure time (PTTDP) is key information in advanced traveler information systems (ATIS). Despite the necessity, forecasting PTTDP is still one of challenges which should be successfully conquered in the forecasting area of intelligent transportation systems (ITS). To address this problem effectively, a methodology to dynamically predict PTTDP between motorway interchanges is proposed in this paper. The method was developed based on the relationships between traffic demands at motorway tollgates and PTTDPs between TGs in the motorway network. Two different data were used as the input of the model: traffic demand data and path travel time data are collected by toll collection system (TCS) and dedicated short range communication (DSRC), respectively. The proposed model was developed based on k-nearest neighbor, one of data mining techniques, in order for the real applications of motorway information systems. In a feasible test with real-world data, the proposed method performed effectively by means of prediction reliability and computational running time to the level of real application of current ATIS.

A Handover Mechanism Between Local Mobility Anchors in Proxy Mobile IPv6-based Vehicular Communication Networks (Proxy Mobile IPv6 기반 차량통신망에서 Local Mobility Anchor간 핸드오버 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun;Cho, Kwon-Hee
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.243-250
    • /
    • 2010
  • Vehicular communication networking is one of the most important building blocks of Intelligent Transportation System (ITS). The vehicular communication network is a wireless communication system enabling vehicles to communicate with each other as well as with roadside base stations. Mobility management of vehicles which move at high speeds and occasionally make a long journey is an interesting research area of vehicular communication networks. Recently, The Proxy Mobile IPv6 (PMIPv6) protocol is proposed for network-based mobility management to reduce the overhead of mobile nodes. PMIPv6 shifts the burden of the mobility management from mobile nodes to network agents to decrease the overhead and latency for the mobility management. In this paper, we derive the scenario of deploying PMIPv6 in vehicular communication networks and propose a new LMA handover mechanism for realizing the scenario. By carrying out the ns-2 based simulations, we verify the operability of the proposed mechanism.

A Robust Real-Time License Plate Recognition System Using Anchor-Free Method and Convolutional Neural Network

  • Kim, Dae-Hoon;Kim, Do-Hyeon;Lee, Dong-Hoon;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2022
  • With the recent development of intelligent transportation systems, car license plate recognition systems are being used in various fields. Such systems need to guarantee real-time performance to recognize the license plate of a driving car. Also, they should keep a high recognition rate even in problematic situations such as small license plates in low-resolution and unclear image due to distortion. In this paper, we propose a real-time car license plate recognition system that improved processing speed using object detection algorithm based on anchor-free method and text recognition algorithm based on Convolutional Neural Network(CNN). In addition, we used Spatial Transformer Network to increase the recognition rate on the low resolution or distorted images. We confirm that the proposed system is faster than previously existing car license plate recognition systems and maintains a high recognition rate in a variety of environment and quality images because the proposed system's recognition rate is 93.769% and the processing speed per image is about 0.006 seconds.

Development of Neural Network Based Cycle Length Design Model Minimizing Delay for Traffic Responsive Control (실시간 신호제어를 위한 신경망 적용 지체최소화 주기길이 설계모형 개발)

  • Lee, Jung-Youn;Kim, Jin-Tae;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.145-157
    • /
    • 2004
  • The cycle length design model of the Korean traffic responsive signal control systems is devised to vary a cycle length as a response to changes in traffic demand in real time by utilizing parameters specified by a system operator and such field information as degrees of saturation of through phases. Since no explicit guideline is provided to a system operator, the system tends to include ambiguity in terms of the system optimization. In addition, the cycle lengths produced by the existing model have yet been verified if they are comparable to the ones minimizing delay. This paper presents the studies conducted (1) to find shortcomings embedded in the existing model by comparing the cycle lengths produced by the model against the ones minimizing delay and (2) to propose a new direction to design a cycle length minimizing delay and excluding such operator oriented parameters. It was found from the study that the cycle lengths from the existing model fail to minimize delay and promote intersection operational conditions to be unsatisfied when traffic volume is low, due to the feature of the changed target operational volume-to-capacity ratio embedded in the model. The 64 different neural network based cycle length design models were developed based on simulation data surrogating field data. The CORSIM optimal cycle lengths minimizing delay were found through the COST software developed for the study. COST searches for the CORSIM optimal cycle length minimizing delay with a heuristic searching method, a hybrid genetic algorithm. Among 64 models, the best one producing cycle lengths close enough to the optimal was selected through statistical tests. It was found from the verification test that the best model designs a cycle length as similar pattern to the ones minimizing delay. The cycle lengths from the proposed model are comparable to the ones from TRANSYT-7F.

Real-time Moving Object Recognition and Tracking Using The Wavelet-based Neural Network and Invariant Moments (웨이블릿 기반의 신경망과 불변 모멘트를 이용한 실시간 이동물체 인식 및 추적 방법)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.10-21
    • /
    • 2008
  • The present paper propose a real-time moving object recognition and tracking method using the wavelet-based neural network and invariant moments. Candidate moving region detection phase which is the first step of the proposed method detects the candidate regions where a pixel value changes occur due to object movement based on the difference image analysis between continued two image frames. The object recognition phase which is second step of proposed method recognizes the vehicle regions from the detected candidate regions using wavelet neurual-network. From object tracking Phase which is third step the recognized vehicle regions tracks using matching methods of wavelet invariant moments bases to recognized object. To detect a moving object from image sequence the candidate regions detection phase uses an adaptive thresholding method between previous image and current image as result it was robust surroundings environmental change and moving object detections were possible. And by using wavelet features to recognize and tracking of vehicle, the proposed method decrease calculation time and not only it will be able to minimize the effect in compliance with noise of road image, vehicle recognition accuracy became improved. The result which it experiments from the image which it acquires from the general road image sequence and vehicle detection rate is 92.8%, the computing time per frame is 0.24 seconds. The proposed method can be efficiently apply to a real-time intelligence road traffic surveillance system.

Conceptual Design of Automatic Control Algorithm for VMSs (VMS 자동제어 알고리즘 설계)

  • 박은미
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.177-183
    • /
    • 2002
  • Current state-of-the-art of VMS control is based upon simple knowledge-based inference engine with message set and each message's priority. And R&Ds of the VMS control are focused on the accurate detection and estimation of traffic condition of the subject roadways. However VMS display itself cannot achieve a desirable traffic allocation among alternative routes in the network In this context, VMS display strategy is the most crucial part in the VMS control. VMS itself has several limitations in its nature. It is generally known that VMS causes overreaction and concentration problems, which may be more serious in urban network than highway network because diversion should be more easily made in urban network. A feedback control algorithm is proposed in this paper to address the above-mentioned issues. It is generally true that feedback control approach requires low computational effort and is less sensitive to models inaccuracy and disturbance uncertainties. Major features of the proposed algorithm are as follows: Firstly, a regulator is designed to attain system optimal traffic allocation among alternative routes for each VMS in the network. Secondly, strategic messages should be prepared to realize the desirable traffic allocation, that is, output of the above regulator. VMS display strategy module is designed in this context. To evaluate Probable control benefit and to detect logical errors of the Proposed feedback algorithm, a offline simulation test is performed using real network in Daejon, Korea.

Development of Demand Forecasting Model for Public Bicycles in Seoul Using GRU (GRU 기법을 활용한 서울시 공공자전거 수요예측 모델 개발)

  • Lee, Seung-Woon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.1-25
    • /
    • 2022
  • After the first Covid-19 confirmed case occurred in Korea in January 2020, interest in personal transportation such as public bicycles not public transportation such as buses and subways, increased. The demand for 'Ddareungi', a public bicycle operated by the Seoul Metropolitan Government, has also increased. In this study, a demand prediction model of a GRU(Gated Recurrent Unit) was presented based on the rental history of public bicycles by time zone(2019~2021) in Seoul. The usefulness of the GRU method presented in this study was verified based on the rental history of Around Exit 1 of Yeouido, Yeongdengpo-gu, Seoul. In particular, it was compared and analyzed with multiple linear regression models and recurrent neural network models under the same conditions. In addition, when developing the model, in addition to weather factors, the Seoul living population was used as a variable and verified. MAE and RMSE were used as performance indicators for the model, and through this, the usefulness of the GRU model proposed in this study was presented. As a result of this study, the proposed GRU model showed higher prediction accuracy than the traditional multi-linear regression model and the LSTM model and Conv-LSTM model, which have recently been in the spotlight. Also the GRU model was faster than the LSTM model and the Conv-LSTM model. Through this study, it will be possible to help solve the problem of relocation in the future by predicting the demand for public bicycles in Seoul more quickly and accurately.

An Incident-Responsive Dynamic Control Model for Urban Freeway Corridor (도시고속도로축의 유고감응 동적제어모형의 구축)

  • 유병석;박창호;전경수;김동선
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.4
    • /
    • pp.59-69
    • /
    • 1999
  • A Freeway corridor is a network consisting of a few Primary longitudinal roadways (freeway or major arterial) carrying a major traffic movement with interconnecting roads which offer the motorist alternative paths to his/her destination. Control measures introduced to ameliorate traffic performance in freeway corridors typically include ramp metering at the freeway entrances, and signal control at each intersections. During a severe freeway incident, on-ramp metering usually is not adequate to relieve congestion effectively. Diverting some traffic to the Parallel surface street to make full use of available corridor capacity will be necessary. This is the purpose of the traffic management system. So, an integrated traffic control scheme should include three elements. (a)on-ramp metering, (b)off-ramp diversion and (c)signal timing at surface street intersections. The purpose of this study is to develop an integrated optimal control model in a freeway corridor. By approximating the flow-density relation with a two-segment linear function. the nonlinear optimal control problem can be simplified into a set of Piecewise linear programming models. The formulated optimal-control Problem can be solved in real time using common linear program. In this study, program MPL(ver 4.0) is used to solve the formulated optimal-control problem. Simulation results with TSIS(ver 4.01) for a sample network have demonstrated the merits of the Proposed model and a1gorithm.

  • PDF