Real-time Moving Object Recognition and Tracking Using The Wavelet-based Neural Network and Invariant Moments

웨이블릿 기반의 신경망과 불변 모멘트를 이용한 실시간 이동물체 인식 및 추적 방법

  • Published : 2008.07.25

Abstract

The present paper propose a real-time moving object recognition and tracking method using the wavelet-based neural network and invariant moments. Candidate moving region detection phase which is the first step of the proposed method detects the candidate regions where a pixel value changes occur due to object movement based on the difference image analysis between continued two image frames. The object recognition phase which is second step of proposed method recognizes the vehicle regions from the detected candidate regions using wavelet neurual-network. From object tracking Phase which is third step the recognized vehicle regions tracks using matching methods of wavelet invariant moments bases to recognized object. To detect a moving object from image sequence the candidate regions detection phase uses an adaptive thresholding method between previous image and current image as result it was robust surroundings environmental change and moving object detections were possible. And by using wavelet features to recognize and tracking of vehicle, the proposed method decrease calculation time and not only it will be able to minimize the effect in compliance with noise of road image, vehicle recognition accuracy became improved. The result which it experiments from the image which it acquires from the general road image sequence and vehicle detection rate is 92.8%, the computing time per frame is 0.24 seconds. The proposed method can be efficiently apply to a real-time intelligence road traffic surveillance system.

본 논문은 실시간 감시 시스템을 위한 웨이블릿(wavelet) 기반의 신경망과 불변 모멘트를 이용한 이동물체 인식과 추적 방법을 제안한다. 제안한 방법의 첫 번째인 움직임 후보영역 검출 단계에서는 연속된 두 프레임간의 차영상 분석 방법을 기반으로 하여 물체의 움직임에 의해 화소값 변화가 발생한 후보영역을 검출한다. 두 번째인 물체 인식 단계에서는 검출된 후보영역에 웨이블릿 신경망(wavelet neural network: WNN) 기반의 인식 방법을 사용하여 추적하고자하는 물체가 포함되어 있는지를 판별한다. 세 번째인 물체 추적 단계에서는 인식된 물체에 웨이블릿 불변 모멘트(invariant moments) 기반의 매칭 방법을 사용하여 인식된 이동 물체를 추적한다. 영상내에서 이동물체를 검출하기 위해 본 논문에서는 이전 영상과 현재 영상간의 화소밝기 차이에서 적응적 임계값(adaptive threholding)을 사용하여 주위 환경 변화에 강인한 이동물체 검출이 가능하였다. 또한 물체의 인식과 추적을 위해 웨이블릿 특징값을 사용함으로써, 계산 시간의 감소와 영상의 잡음에 의한 영향을 최소화시킬 수 있을 뿐만 아니라, 물체 인식 정확도가 향상되었다. 제안한 방법을 일반 도로에서 획득한 영상에서 실험한 결과, 자동차 검출율은 92.8%, 프레임당 처리 시간은 0.24초이다. 이것을 통해 제안한 방법은 실시간 지능형 교통 감시 시스템에 유용하게 적용될 수 있음을 알 수 있다.

Keywords

References

  1. J. Zhou, D. Gao, D. Zhang, "Moving Vehicle Detection for Automatic Traffic Monitoring", IEEE Trans. on Vehicular Technology, Vol. 56, no. 1, pp. 51-59, 2007 https://doi.org/10.1109/TVT.2006.883735
  2. T. Alexandropoulos, S. Boutas, V. Loumos, E. Kayafas, "Real-time change detection for surveillance in public transportation", IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 58-63, 2005
  3. J. C. McCall, M. M. Trivedi, "Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation", IEEE Trans. on Intelligent Transportation Systems, Vol. 7, no. 1, pp. 20-37, 2006 https://doi.org/10.1109/TITS.2006.869595
  4. R. Cucchiara, C. Grana, M. Piccardi, A. Prati, "Detecting moving objects, ghosts, and shadows in video streams", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, no. 10, pp. 1337-1342, 2003 https://doi.org/10.1109/TPAMI.2003.1233909
  5. R. Cucchiara, M. Piccardi, M. P. Mello, "Image analysis and rule-based reasoning for a traffic monitoring system", IEEE Trans. on Intelligent Transportation Systems, Vol. 1, no. 2, pp. 119-130, 2000 https://doi.org/10.1109/6979.880969
  6. G. L. Foresti, "Object recognition and tracking for remote video surveillance", IEEE Trans. on Circuits and Systems for Video Technology, Vol. 9, no. 7, pp. 1045-1062, 1999 https://doi.org/10.1109/76.795058
  7. G. L. Foresti, V. Murino, C. Regazzoni, "Vehicle recognition and tracking from road image sequences", IEEE Trans. on Vehicular Technology, Vol 48, no. 1, pp. 301-318, 1999 https://doi.org/10.1109/25.740109
  8. M. Betke, E. Haritaoglu, L. S. Davis, "Highway scene analysis in hard real-time", IEEE Conference on Intelligent Transportation System, pp. 812-817, 1997
  9. A. Talukder, S. Goldberg, L. Matthies, A. Ansar, "Real-time detection of moving objects in a dynamic scene from moving robotic vehicles", IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2, pp. 1308-1313, 2003
  10. W. Junwen, Z. Xuegong, "A PCA classifier and its application in vehicle detection", IEEE International Joint Conference on Neural Networks, Vol. 1, pp. 600-604, 2001
  11. P. R. Liu, M. Q.-H. Meng, P. X. Liu, "Moving object segmentation and detection for monocular robot based on active contour model", Electronics Letters, Vol 41, no. 24, pp. 1320-1322, 2005 https://doi.org/10.1049/el:20053620
  12. J. B. Kim, K. K. Kim, H. J. Kim, "Learning-Based Approach For License Plate Recognition", Proceeding of The 1th KISPS Summer Conference, Vol. 1, no. 1, pp. 273-276, 2000
  13. J. B. Kim, H. J. Kim, "Efficient Region-Based Motion Segmentation for a Video Monitoring System", Pattern Recognition Letter, Vol. 24, no. 1, pp. 113-128, 2003 https://doi.org/10.1016/S0167-8655(02)00194-0
  14. J. B. Kim, H. J. Kim, "Multiresolution-Based Watersheds for Efficient Image Segmentation", Pattern Recognition Letter, Vol. 24, no. 1, pp. 473-488, 2003 https://doi.org/10.1016/S0167-8655(02)00270-2
  15. R. C. Gonzalez, Digital Image Processing, Prentice Hall, 2004
  16. C. E. Bae, J. B. Kim and H. J. Kim, "Moving Object Segmentation Using Adaptive Thresholding and K-Means Clustering", the KISS. Fall Workshop on CVPR, pp. 23-24, 2001
  17. J. B. Kim, C. W. Lee, K. M. Lee, T. S. Yun, H. J. Kim, "Wavelet-based vehicle tracking for Automatic Traffic Surveillance", IEEE TENCON'01, Vol. 1, pp. 313-316, 2001