• Title/Summary/Keyword: 지능탄

Search Result 27, Processing Time 0.024 seconds

Artificial Intelligence In Wheelchair: From Technology for Autonomy to Technology for Interdependence and Care (휠체어 탄 인공지능: 자율적 기술에서 상호의존과 돌봄의 기술로)

  • HA, Dae-Cheong
    • Journal of Science and Technology Studies
    • /
    • v.19 no.2
    • /
    • pp.169-206
    • /
    • 2019
  • This article seeks to explore new relationships and ethics of human and technology by analyzing a cultural imaginary produced by artificial intelligence. Drawing on theoretical reflections of the Feminist Scientific and Technological Studies which understand science and technology as the matter of care(Puig de la Bellacas, 2011), this paper focuses on the fact that artificial intelligence and robots materialize cultural imaginary such as autonomy. This autonomy, defined as the capacity to adapt to a new environment through self-learning, is accepted as a way to conceptualize an authentic human or an ideal subject. However, this article argues that artificial intelligence is mediated by and dependent on invisible human labor and complex material devices, suggesting that such autonomy is close to fiction. The recent growth of the so-called 'assistant technology' shows that it is differentially visualizing the care work of both machines and humans. Technology and its cultural imaginary hide the care work of human workers and actively visualize the one of the machine. And they make autonomy and agency ideal humanness, leaving disabled bodies and dependency as unworthy. Artificial intelligence and its cultural imaginary negate the value of disabled bodies while idealizing abled-bodies, and result in eliminating the real relationship between man and technology as mutually dependent beings. In conclusion, the author argues that the technology we need is not the one to exclude the non-typical bodies and care work of others, but the one to include them as they are. This technology responsibly empathizes marginalized beings and encourages solidarity between fragile beings. Inspired by an art performance of artist Sue Austin, the author finally comes up with and suggests 'artificial intelligence in wheelchair' as an alternative figuration for the currently dominant 'autonomous artificial intelligence'.

폭발계열을 중심으로 한 화공기술(2)

  • Kim, Chang-Sik
    • Defense and Technology
    • /
    • no.3 s.277
    • /
    • pp.44-53
    • /
    • 2002
  • 화공기술은 여러분야의 기술들이 복합적으로 이루어진 기술로서 이것을 응용하여 개발한 화공품류는 지능탄과 같은 정밀무기나 소형정밀하고 다양한 기능을 요구하는 항공산업에서 필수 핵심부품이므로 이를 개발할 수 있는 독자기술을 확보하지 않으면 안된다. 이 분야에 종사하였던 연구자로서 연구결과로 얻어진 화공기술이 무기체계에 나타난 성과가 지대하였던 과거의 경험을 돌이켜 볼 때, 현 기술 수준으로 미흡한 특수 화공품 개발도 지속적인 연구를 통해 자체 해결할 수 있을 것으로 확신한다.

  • PDF

Aerodynamic Design of a Canard Controlled 2D Course Correction Fuze for Smart Munition (카나드 기반의 지능탄 조종 장치 공력설계)

  • Park, Ji-Hwan;Bae, Ju-Hyeon;Song, Min-Sup;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • Course correction munition is a smart projectile which improves its accuracy by the control mechanism equipped in the fuze section with canard. In this paper, various aerodynamic configurations of the fuze section were analysed by utilizing a semi-empirical method and a CFD method. A final canard configuration showing the least drag was then determined. During the CFD simulation, it was found that the k-${\omega}$ SST turbulence model combined with O-type grid base is suitable for the prediction of the base drag. Finally, the aerodynamic characteristics of the smart munition and the change of drag due to the canard installation were analysed.

A Navigation Algorithm of Modular Robots with 3 DOF Docking Arm in Uneven Environments (3자유도 결합 팔을 가진 모듈형 로봇의 비평탄 지형 주행 알고리즘)

  • Na, Doo-Young;Min, Hyun-Hong;Lee, Chang-Seok;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.311-317
    • /
    • 2010
  • In the paper, we propose an improved mobility method of modular robots by physical docking in the uneven environments. The modular robot system consists of autonomous docking device, 3 DOF robotic arm, motion controller, and main controller. Real-time location and direction of the robot are estimated using inner GPS and they are used to control direction and path of each robot for physical docking between modular robots. We design a navigation algorithm of modular robot using physical docking and cooperative navigation in the environment with broken road and low stair. The proposed method is verified by navigation experiments of three developed modular robots in the uneven environments.

A Study on the Design of Wheel-Driven Robot Based on Embedded Systems (임베디드 시스템 기반의 바퀴 구동형 로봇 설계에 관한 연구)

  • Min-Gyu Kim;Ji-Ho Seon;Se-Jin Jeong;Myeong-Suk Pak;Sang-Hoon Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.748-749
    • /
    • 2023
  • 본 논문은 평탄한 지형뿐만이 아닌 턱과 계단 같은 비평탄 요소가 있는 지형에서도 주행이 가능한 바퀴 구동형 지능 로봇 설계를 목적으로 지형 극복 기능을 구현하기 위한 구동 방식을 크랭크의 원리를 이용한 기어 구조를 이용했고, 지능로봇의 지능적 요소를 구현하기 위해 구성된 임베디드 시스템에 대해 정리한 논문이다.

Quadruped Robot for Walking on the Uneven Terrain and Object Detection using Deep Learning (딥러닝을 이용한 객체검출과 비평탄 지형 보행을 위한 4족 로봇)

  • Myeong Suk Pak;Seong Min Ha;Sang Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.237-242
    • /
    • 2023
  • Research on high-performance walking robots is being actively conducted, and quadruped walking robots are receiving a lot of attention due to their excellent mobility and adaptability on uneven terrain, but they are difficult to introduce and utilize due to high cost. In this paper, to increase utilization by applying intelligent functions to a low-cost quadruped robot, we present a method of improving uneven terrain overcoming ability by mounting IMU and reinforcement learning on embedded board and automatically detecting objects using camera and deep learning. The robot consists of the legs of a quadruped mammal, and each leg has three degrees of freedom. We train complex terrain in simulation environments with designed 3D model and apply it to real robot. Through the application of this research method, it was confirmed that there was no significant difference in walking ability between flat and non-flat terrain, and the behavior of performing person detection in real time under limited experimental conditions was confirmed.

Design of Hybrid Wheeled and Legged Mobile Robot with a Waist Joint (허리 구조를 갖는 복합 바퀴-다리 이동형 로봇의 설계)

  • Choi, Dae-Gyu;Jeong, Dong-Hyuk;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.304-309
    • /
    • 2014
  • In this paper, we design a hybrid wheeled and legged mobile robot with a waist joint. The proposed hybrid mobile robot is designed to have a hybrid structure with leg and wheel for the efficient movement in flat and uneven surfaces. The proposed robot have a waist joint that is used to stably transform from wheeled driving to legged walking of the robot and to overcome non-flat surface. In order to recognize various environments we use LRF sensor, PSD sensor, CCD camera. Also, a motion planning method for hybrid mobile robot with a waist joint is proposed to select wheeled driving motion and legged walking motion of the robot based the environment types. We verify the efficient mobility of the developed hybrid mobile robot through navigation experiments using the proposed motion planning method in various environments.

Intelligent Hexapod robot for the support walking of the aged (고령자 보행 지원을 위한 지능형 6족 로봇)

  • Lee, Sang-Mu;Kim, Sang-Hoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.534-539
    • /
    • 2008
  • This paper is about intelligent hexapod robot for the support walking of the aged person. The robot using various sensors and small camera has various abilities of forward backward walking, turing left or right, control the speed of walking, avoiding the obstacles and detecting risky situation of fire or gas. To let the aged feel soft and safe walking, we used special servo motor and developed hexapod walking mechanism and effective algorithm.

  • PDF

Real-time human detection method based on quadrupedal walking robot (4족 보행 로봇 기반의 실시간 사람 검출 방법)

  • Han, Seong-Min;Yu, Sang-jung;Lee, Geon;Pak, Myeong-Suk;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.468-470
    • /
    • 2022
  • 본 논문은 강화학습 POMDP(Partially Observable Markov Decision Process) 알고리즘을 사용하여 자갈밭과 같은 비평탄 지형을 극복하는 4족 보행 지능로봇을 설계하고 딥러닝 기법을 사용하여 사람을 검출한다. 로봇의 임베디드 환경에서 1단계 검출 알고리즘인 YOLO-v7과 SSD의 기본 모델, 경량 또는 네트워크 교체 모델의 성능을 비교하고 선정된 SSD MobileNet-v2의 검출 속도를 개선하기 위해 TensorRT를 사용하여 최적화를 진행하였다

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.