• Title/Summary/Keyword: 지구조적 압축력

Search Result 14, Processing Time 0.022 seconds

Anisotropy of Magnetic Susceptibility (AMS) of Anorthositic Rocks in the Hadong-Sanchong Area (하동-산청지역에 분포하는 회장암질암에 대한 대자율 비등방성 연구)

  • Kim, Seong Uk;Choe, Eun Gyeong;Kim, In Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.169-178
    • /
    • 1999
  • Low-field anisotropy of magnetic susceptibility (AMS) was measured with 247 samples from 17 sites of Pre-Cambrian anorthositic rocks in the Hadong-Sanchong area, southwestern part of the Ryongnam Block. Tectonic stress-direction is defined by the minimum susceptibility (k3) direction, and flow-direction by the maximum susceptibility (k1) direction. Five sites rendered self-consistent NW-SE site-mean tectonic stress-direction. Even though a general fold test for every site was not possible due to the homoclinal nature of the bedding attitudes, a site with various bedding attitudes shows far better clustering of the k3-direction before the bedding-tilt correction. The in-situ NW-SE tectonic stress-direction is consistent over the study area and compatible with petrographic foliation observed in metamorphic rocks in and arround the study area, suggesting a regional compressive force acted after the emplacement of the anorthositic rocks. On the other hand, flow-directions obtained from six sites varies from site to site. Strong-field IRM experiments show predominance of titanomagnetites over a small amount of hematite in some samples.

  • PDF

Paleostress Reconstruction in the Tertiary Basin Areas in Southeastern Korea (한반도 동남부 제3기 분지지역에서의 고응력장 복원)

  • Moon, Tae-Hyun;Son, Moon;Chang, Tae-Woo;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.230-249
    • /
    • 2000
  • Southeastern Korean Peninsula has undergone the polyphase deformations according to the changes of regional tectonic settings during the Cenozoic. Through analyses of more than 600 fault-slip data gathered in the study area, five tectonic events are revealed as the followings: (I) NW-SE transtension, (II) NW-SE transpression, (III) NE-SW pure or radial extension, (IV) NNE-SSW transpression, (V) NE or ENE-WSW transpression. Event I was induced by the pull-apart type extension of the East Sea during 24-16 Ma, which resulted in the NW-SE extension of the Tertiary Basins in SE Korea. Event II was resulted from the collision of SW Japan and Izu-Bonnin Arc (or Kuroshio Paleoland) on the Philippine Sea Plate at ${\sim}$ 15 Ma, which stopped the extension of the Tertiary Basins and originated the uplift of fault blocks in and around SE Korean Peninsula. It was continued until ${\sim}$ 10 Ma. Event III is interpreted as the post-tectonic event after the block-uplifts due to the event II, which indicates a temporal lull in activity of the Philippine Sea Plate since 10 Ma. Event IV was originated from the resumption in activity of the Philippine Sea Plate which was restarted to move toward north at ${\sim}$ 6 Ma. The event made the EW compressional structures behind SW Japan as well as in the Korea Straits, and thus the block-uplifts in SE Korea was resumed again. Lastly, event V was resulted from the gradual decrease in influence of the Philippine Sea Plate and the cooperative compression due to the subduction of the Pacific Sea Plate and the collision of the Indian Plate since 5-3.5 Ma, which generated the NS compressional structures in the offshore along the eastern coast of the Korean Peninsula and thrust up the fault-blocks toward west. This event is continuing so far, and thus is making the active faultings resulting in the present earthquakes of the Korean Peninsula.

  • PDF

Sphene U-Pb ages of the granodiorites from Gimcheon, Seongju and Anui areas of the middle Yeongnam Massif (영남육괴 중부 김천, 성주 및 안의지역 화강섬록암의 스핀 U-Pb 연대)

  • Park Kye-Hun;Lee Ho-Sun;Cheong Chang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Sphene U-Pb ages were determined for the granodiorites from Gimcheon, Seongju and Anui areas of the middle Yeongnam massif. The determined ages were in the narrow range of 195.7±2.4∼200.8±1.9(2σ) Ma that are approximately coincident with the boundary between Triassic and Jurassic. Even though the studed plutons are aerially separated, they reveal quite similar major element compositions and almost identical ages, suggesting that they were generated from the similar source materials under the identical tectonic environment and thus they can be considered to form a single suite. Considering the age and spatial distribution of the Triassic to Lower Jurassic plutons of the Yeongnam Massif and Okcheon Belt, it seems that there were episodic changes in tectonic environment in both areas with relatively short intervals. In general, the compressive environment of active continental margin was prevailed. However, the tensional environment of within-plate was also appeared several times intermittently. In conclusion, Yeongnam Massif and Okcheon Belt experienced distinct tectonic environments during Triassic to Lower Jurassic, providing important clue to reveal the crustal evolution of the Korean Peninsula.

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review (한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평)

  • Kim, Min-Cheol;Jung, Soohwan;Yoon, Sangwon;Jeong, Rae-Yoon;Song, Cheol Woo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.169-193
    • /
    • 2016
  • In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Development History of Neotectonic Fault Zone in the Singye-ri Valley, Oedong-eup, Gyeongju, Korea (경주시 외동읍 신계리 계곡에 발달하는 신기 단층대 발달사)

  • Kang, Ji-Hoon;Son, Moon;Ryoo, Chung-Ryul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.349-359
    • /
    • 2020
  • The Ulsan Fault Zone (UFZ) of NNW trend is developed in the Gyeongsang Basin, the southeastern part of the Korean Peninsula, and the Quaternary faults have been found around the UFZ. The faults generally thrust the Bulguksa igneous rocks of Late Cretaceous-Early Tertiary upon the Quaternary deposits or are developed within the Quaternary deposits. They mainly show the reverse-slip sense of top-to-the west movement. The lines connecting the their outcrop sites show a zigzag-form which is similar to the orientation of their fault surfaces which show the various trends, like (W)NW, N-S, (E)NE, ENE trends. The E-W trending dextral strike(-slip) fault is found in the Quaternary deposits of the Singye-ri valley. It cuts the N-S trending reverse fault and are cut by the N-S trending thrust fault again. Two types of at least two times of Quaternary tectonic movements related to the formation of neotectonic fault zone in the Singye-ri valley are considered from such the geometric and kinematic characteristics of Quaternary faults. One is the reverse faulting of N-S trend by the E-W directed 1st compression and associated the strike-slip tear faulting of E-W trend, and then the thrust faulting of N-S trend by the E-W directed 2nd compression. The other is the reverse faulting of N-S trend, and then the dextral strike-slip faulting of E-W trend by the NW-SE directed compression, and then the thrust faulting of N-S trend. In this paper is suggested the development history of Singye-ri neotectonic fault zone on the basis of the various orientations of Quaternary fault surfaces around the UFZ, and the zigzag-form connecting line of their outcrop sites, and the compressive arc-shaped lineaments which convex to the west reported recently in the Yangsan Fault Zone.

Marine Terraces and Quaternary Faults in the Homigot and the Guryongpo, SE Korea (호미곶과 구룡포지역 해안단구와 신기지구조운동)

  • Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.231-240
    • /
    • 2016
  • Three Quaternary faults have been revealed in marine terraces nearby the Homigot and the Gurongpo in the southeastern offshore of Korean Peninsula. The Hajung fault cuts the $4^{th}$ marine terraces and the Guman fault the $2^{nd}$, respectively. The Hajung fault strikes $N55^{\circ}$ to $45^{\circ}W$ and dips $40^{\circ}$ to $45^{\circ}NE$ with reverse-displacement of 180cm vertically. There are four sets of colluvial sediment strata that would be produced by faulting and indicate four times of fault movements during MIS 7 and MIS 5c. The Guman fault site consists of three sets of reverse faults that strike $N80^{\circ}E$ to $N70^{\circ}W$ and dip $25^{\circ}{\sim}35^{\circ}SE$ to $30^{\circ}SW$ with vertical displacement of 9~18 cm. The Guman faulting occurred during 80 ka (MIS 5a) to 71 ka (MIS 4) but it extends only to the lowest bed, the pebble sand bed, lay just on the unconformity, and not to the upper. Considering the attitude of the faults, we inferred that the Hajung fault was activated under the ENE-WSW compression during MIS 7 to MIS 5c and the Guman under N-S trending compression during MIS 5a. Using the OSL age dating results, we reconfirmed that the $2^{nd}$ terrace is correlated to MIS 5a and the $4^{th}$ terraces to MIS 7.

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization (해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Ryoo, Chung-Ryul;Koh, Sang-Mo;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.413-431
    • /
    • 2011
  • An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.

지질시대 및 지구조별 국내대리석 석재자원의 분류와 물성

  • 윤현수;홍세선;박덕원;이병대;김주용
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.153-169
    • /
    • 2002
  • 국내 대리석류 석재자원은 지질시대 및 지구조별로 선캠브리아기의 경기육괴와 영남육괴, 시대미상의 옥천대 남서부, 캠브리아-오오도비스기의 옥천대 북동부 그리고 일부 기하시대의 옥천대 북동부 등으로 분류될 수 있다. 전자는 변성퇴적암류내에 협재된 결정질 석회암, 화강암질 편마암내 포획된 결정질 석회암 등s으로 경기육괴의 포천, 김포, 온수리, 목계와 신림도폭 그리고 영남육괴의 춘양, 현동, 울진, 중평동 장기리와 장계도폭 등이 해당된다. 시대미상암류는 옥천대 남서부로서 목계 충주 괴산, 강경, 남원과 송정도폭, 그리고 캠브리아기는 풍촌석회암으로 임계, 호명, 서벽리도폭 등이 해당된다. 오오도비스기는 정선석회암이 분포하는 석병산, 평창, 정선과 임계도폭, 화천리층이 분포하는 문경도폭, 그리고 황강리도폭 등이 해당한다. 기타시대는 시대미상의 각력질 석회암과 상부석탄기의 홍점층군내 협재하는 결정질 석회암으로 이들은 각각 정선도폭과 석병산도폭에 위치한다. 선캠브리아기, 시대미상, 캠브리아기 및 오오도비스기 대리석류의 물성 중에서 흡수율과 공극율은 선캠브리아기, 오오도비스기 시대미상과 캠브리아기의 순으로 점차 감소한다 이들의 공극율은 비중에 대하여 대체로 불규칙하며, 흡수율은 공극율에 대하여 거의가 뚜렷한 정의 상관관계를 이룬다. 압축강도는 공극율에 대하여 다소 불규칙한, 그리고 인장강도에 대하여 정의 상관관계를 이룬다. 그리고 마모경도는 압축강도와 인장강도에 대하여 대체로 뚜렷한 정의 경향을 각각 보인다. 이들 대리석류는 선캠브리아기 중경암-경암, 시대미상 중경암-경암, 캠브리아기 거의가 중경암-경암, 그리고 오오도비스기는 경암에 각각 해당한다.역할을 충실히 담당하고 있는 것으로 분석되었다. 그러나 과학기술의 급격한 발달, 소비패턴의 변화, 생활환경과 삶의 질을 중시하는 새로운 가치관의 확산 등으로 광업의 역할도 새로운 변화의 전기를 맞이하고 있음을 볼 수 있다. 국내광업이 21C 급변하는 산업환경에 적응하여 생존하기 위해서는 각종 첨단산업에서 요구하는 소량 다품종의 원료광물을 적기에 공급 할 수 있는 전문화된 기술력을 하루속히 확보해야 하며, 이를 위해 고품위의 원료광물 확보를 위한 탐사 및 개발을 적극 추진하고 가공기술의 선진화를 위해 선진국과의 기술제휴 등 자원산업 글로벌화 정책이 절실히 요구되고 있음을 알 수 있다. 또한 삶의 질을 향상시키려는 현대인의 가치관에 부합하기 위해서는 각종 소비제품의 원료를 제공하는 광업의 본래 목적 이외에도 자연환경 훼손을 최소화하며 개발 할 수밖에 없는 구조적인 어려움에 직면할 수밖에 없다. 이처럼 국내광업이 안고 있는 여러 가지 난제들을 극복하기 위해서는 업계와 정부가 합심하여 국내광업 육성의 중요성을 재인식하고 새로운 마음가짐으로 관련 정책을 수립 일관성 있게 추진해 나가야 할 것으로 보인다.의 연구 결과를 요약하면 다음과 같다. 첫째, 브랜드 이미지와 서비스 품질과의 관계에서 브랜드이미지는 서비스 품질의 선행변수가 될 수 있음을 증명하였으며 4개 요인의 이미지 중 사풍이미지를 제외한 영업 이미지, 제품 이미지, 마케팅 이미지가 서비스 품질에 영향을 미치고 있음을 알 수 있다. 둘째, 지각된 서비스 품질과 가격 수용성과의 관계에서, 서비스 품질은 최소 가격에 신뢰서비스 요인에서 정의 영향을 미치고 있으나 부가서비스, 환경서비스에서는 역의 영향을

  • PDF

Distribution and characteristics of Quaternary faults in the coastal area of the southeastern Korean Peninsula: Results from a marine seismic survey (해양 탄성파 탐사 결과로 본 한반도 남동부연안 4기 단층의 분포와 특성)

  • Kim Han-Joon;Jou Hyeong-Tae;Hong Jong-Kuk;Park Gun-Tae;Nam Sang-Heon;Cho Hyun-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.46-66
    • /
    • 2002
  • High-resolution multichannel seismic data were collected in the coastal area near the Gori nuclear power plant to investigate Quaternary fault pattern and timing. A 12 channel streamer, a sparker, and a portable recorder were used for data acquisition. Because the group interval of the streamer was 6.25 m and the sparker can generate acoustic waves with the frequency content of up to 500 Hz, the data show a significant improvement both in horizontal and vertical resolution. The area surveyed is covered with 30-40 m thick Holocene sediments that constitute the mud belt along the southeastern coast of Korea. The survey area is characterized by the well discriminated Pleistocene and Holocene boundary and shallow gas-charged zones. A number of Quaternary faults were found in the sediment column, that are nearly vertical and extend north-south. The Quaternary faults, arranged at a spacing of a few hundred meters, suggest that they were formed in response to compression, although some of them reveal extensional characteristics. Locally, faults disrupt Incised-channel fills that are interpreted to have formed in the early stage of transgression after the beginning of the Holocene. Seismic sections suggest that shallow gas in the mud belt sediments made its way upward through the fractured fault planes. The tectonism responsible for the opening of the East Sea has not persisted since the late Miocene, but vigorous Quaternary faulting activity in the vicinity of the southeastern Korean Peninsula indicates that tectonic stability has yet to be achieved in this region underlain by the hotter than normal mantle.

  • PDF