DOI QR코드

DOI QR Code

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review

한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평

  • Kim, Min-Cheol (Department of Geological Sciences, Pusan National University) ;
  • Jung, Soohwan (Engineering and Resource Department, Nexgeo Inc.) ;
  • Yoon, Sangwon (National Disaster Management Research Institute) ;
  • Jeong, Rae-Yoon (Department of Geological Sciences, Pusan National University) ;
  • Song, Cheol Woo (Department of Geological Sciences, Pusan National University) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University)
  • 김민철 (부산대학교 지질환경과학과) ;
  • 정수환 ((주)넥스지오 엔지니어링자원사업본부) ;
  • 윤상원 (국립재난안전연구원) ;
  • 정래윤 (부산대학교 지질환경과학과) ;
  • 송철우 (부산대학교 지질환경과학과) ;
  • 손문 (부산대학교 지질환경과학과)
  • Received : 2016.09.19
  • Accepted : 2016.09.28
  • Published : 2016.09.30

Abstract

In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.

한반도 일원의 신기 지각변형과 현생 응력장의 특징을 규명하고 지구조적 형성 배경을 이해하기 위해, 제4기 단층과 발진기구해에 관한 기존 자료와 더불어 최근의 지각천부 시추공 응력자료를 종합하여 재분석하였으며, 마이오세 이후 동아시아 일원의 지구조 환경 변화와 지각변형 특징을 정리하였다. 한반도 남동부의 제4기 단층은 대부분 기존 단층대를 따라 발견된다. 또한 대부분 남-북으로 배열된 상반 서향의 충상단층의 기하와 운동특성을 보이며, 동-서 방향의 순수 압축응력 하에서 적절히 배향된 기존 약대가 재활된 특징을 보인다. 한반도와 인근 해역의 발진기구해 분석 결과, 내륙에서는 주향이동단층 또는 역이동성 운동감각을 포함하는 주향이동단층이 우세한 반면, 동해와 서해 연안의 경우에는 역단층이 우세한 특징을 보인다. 압축 축은 동북동과 서남서를 향해 수평 내지 아수평한 자세로 군집되며, 인장 축은 북북서-남남동 주향을 가지는수직의 대원 상에 배열된다. 시추공 내 응력측정 자료를 취합한 결과, 한반도 지각천부의 평균 최대수평응력은 동북동-서남서 방향으로 나타났다. 따라서 한반도 일원은 현재 광역적인 동북동-서남서 내지 동-서 방향의 압축력에 의한 압축구조가 발달중인 것으로 판단된다. 동아시아 일원의 광역적인 현생 응력장 분포와 비교한 결과, 이러한 동북동-서남서 내지 동-서 방향의 압축응력환경은 태평양판의 서향 저각 섭입과 인도-유라시아 충돌로부터 전파된 응력장이 중첩된 결과로 판단되며, 대부분 고각 섭입의 양상을 보이는 필리핀해판은 배호지역 내에서 인장 환경의 특징을 보여주고 있어 한반도에서의 영향은 미미한 것으로 판단된다. 이상과 같은 동아시아 일원의 신기 지구조환경과 지각변형은 약 5~3.2 Ma 경 태평양판의 이동방향과 섭입각도의 변화와 함께 시작된 것으로 해석된다.

Keywords

References

  1. Abdelwahed, M.F. and Zhao, D., 2007, Deep structure of the Japan subduction zone. Physics of the Earth and Planetary Interiors 162, 32-52. https://doi.org/10.1016/j.pepi.2007.03.001
  2. Argus, D.F., Gordon, R.G., Heflin, M.B., Ma, C., Eanes, R.J., Willis, P., Peltier, W.R., and Owen, S.E., 2010, The angular velocities of the plates and the velocity of the Earth's centre from space geodesy. Geophysical Journal International, 18, 1-48. doi:10.1111/j.1365-246X.2009.04463.x.
  3. Ashurkov, S.V., San'kov, V.A., Miroschnichenko, A.I., Lukhnev, A.V., Sorokin, A.P., Serov, M.A., and Byzov, L.M., 2011, GPS geodetic constrains on the kinematics of the Amurian Plate. Russian Geology and Geophysics, 52, 239-249. https://doi.org/10.1016/j.rgg.2010.12.017
  4. Austermann, J., Ben-Avraham, Z., Bird, P., and Heidbach, O., 2011, Quantifying the forces needed for the rapid change of Pacific plate motion at 6 Ma. Earth and Planetary Science Letters, 307, 289-297. https://doi.org/10.1016/j.epsl.2011.04.043
  5. Back, J.J., Kyung, J.B., and Choi, H., 2011, Analysis on the source characteristics of the recent five-year earthquakes occurred in the central and western areas of the Korean Peninsula. Journal of Korean Earth Science Society, 32, 161-169 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2011.32.2.161
  6. Bae, S., 2005, Characteristics of initial rock stress state in Korean tectonic provices by hydro fracturing stress measurement. Thesis of Ph.D., Seoul National University, Korea, 223p (in Korean with English abstract).
  7. Bae, S., Jeon, S., Kim, J., and Kim, J., 2008. Characteristics of the regional rock stress field at shallow depth in the Kyungsang Basin with In-situ rock stress measurements. Tunnel & Underground Space, Journal of Korean Society for Rock Mechanics, 18, 149-161 (in Korean with English abstract).
  8. Barth, A. and Wenzel, F., 2010, New constraints on the intraplate stress field of the Amurian plate deduced from light earthquake focal mechanisms. Tectonophysics, 482, 160-169. https://doi.org/10.1016/j.tecto.2009.01.029
  9. Becker, A., 1993, An attempt to define a 'neotectonic period' for central and norhtern Europe. Geologische Rundschau, 82, 67-83. https://doi.org/10.1007/BF00563271
  10. Bird, P., 2003, An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4, 1027, doi:10.1029/2001GC000252, ISSN: 1525-2027.
  11. Brown, E.T. and Hoek, E., 1978, Trends in relationships between measured In-situ stressses and depth. International Journal of Rock Mechanics and Mining Sciences, 15, 211-215. https://doi.org/10.1016/0148-9062(78)91227-5
  12. Calais, E., Dong, L., Wang, M., Shen, Z., and Vergnolle, M., 2006, Continental deformation in Asia from a combined GPS solution. Geophysical Research Letters, 33, L24319, doi: 10.1029/2006GL028433.
  13. Calais, E., Vergnolle, M., Sankov, V., Lukhnev, A., Miroshnitchenko, A., Amarjargal, S., and Deverchere, J., 2003, GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002): implications for current kinematics of Asia. Journal of Geophysical Research, 108, doi:10.1029/2002JB002373.
  14. Chang, C., Lee, J.B., and Kang, T.-S., 2010, Interaction between regional stress state and faults: complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea. Tectonophysics, 485, 164-177. https://doi.org/10.1016/j.tecto.2009.12.012
  15. Chang, T.W., 2001, Quaternary tectonic activity at the eastern block of the Ulsan fault. Journal of the geolgical society of Korea, 37, 431-444 (in Korean with English abstract).
  16. Chapman, N., Apted, M., Beavan, J., Berryman, K., Cloos, M., Connor, C., Connor, L., Hasenaka, T., Jaquet, O., Kiyosugi, K., Litchfield, N., Mahony, S., Miyoshi, M., Smith, W., Sparks, S., Stirling, M., Villamor, P., Wallace, L., Goto, J., Miwa, T., Tsuchi, H., and Kitayama, K., 2009, Development of methodologies for the identification of volcanic and tectonic hazards to potential HLW repository sites in Japan: The Kyushu case study. Research Report of Nuclear Waste Management Organization of Japan, NUMO-TR-09-02, 186p.
  17. Chen, Z. Burchfiel, C., Liu, Y., King, R.W., Royden, L.H., Tang, W., Wang, E., Zhao, J., and Zhang, X., 2000, Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. Journal of geophysical Research, 105, 16,215-16,227. https://doi.org/10.1029/2000JB900092
  18. Cheong, C.-S. and 15 others, 2001, Absolute age determination of Quaternary fault and formation. Technical Note of Korea Institute of Nuclear Safety, KINS/HR-392, 162p (in Korean with English abstract).
  19. Cheong, C.-S., Hong, D.G., Lee, K.S., Kim, J.W., Choi, J.H., Murray, A.S., Chwae, U., Im, C.B., Chang, C.J., and Chang, H.W., 2003, Determination of slip rate by optical dating of fluvial deposits form the Wangsan fault, SE Korea. Quaternary Science Reviews, 22, 1,207-1,211. https://doi.org/10.1016/S0277-3791(03)00020-9
  20. Cho, H., Kang, T.-S., and Kyung, J.B., 2006, Focal mechanism solutions of microearthquakes in the southwestern part of the Korean Peninsula. Journal of Korean Earth Science Society, 27, 341-347 (in Korean with English abstract).
  21. Cho, H., Kim, M.-C., Kim, H., and Son, M., 2014, Anisotropy of magnetic susceptibility (AMS) of the Quaternary faults, SE Korea: application to the determination of fault slip sense and paleo-stress field. The Journal of the Petrological Society of Korea, 23, 75-103 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2014.23.2.75
  22. Cho, K.-H., Takagi, H., Iwamura, A., Awaji, D., Chang, T.W., Shon, S.-W., Itaya, T., and Okada, T., 2001, Timing of the hydrothermal alteration associated with the fault activities along the Ulsan Fault Zone, southeast Korea. Economic and Environmental Geology, 34, 583-593 (In Korean with English abstract).
  23. Choi, H., Hong, T.-K., He, X., and Baag, C.-E., 2012, Seismic evidence for reverse activation of a paleo-rifting system in the East Sea (Sea of Japan). Tectonophysics, 572-573, 123-133. https://doi.org/10.1016/j.tecto.2011.12.023
  24. Choi, P., 2005, Geometric analysis of the Quaternary Eupchon Fault: an Interpretation of Trench Sections. Journal of the Geological Society of Korea, 41, 129-140 (in Korean with English abstract).
  25. Choi, S.-J., Chwae, U.-C., Ryoo, C.-R., Choi, P., Im, C.B., and Cheong, C.-S., 2002, Segmentation of Quaternary faults in the eastern part of the Ulsan Fault. Proceedings of the Korean Society of Economic and Environmental Geology Conference spring 2002, 277-279 (in Korean).
  26. Choi, S.-J., Hong, D.-G., Chwae, U., Song, Y.G., Kim, C., and Shim, T., 2010, Retrodeformation analysis of the Quaternary fault in the southeastern Korean Peninsula. Gondwana Research, 17, 116-124. https://doi.org/10.1016/j.gr.2009.07.008
  27. Choi, S.-O., Park, C., Synn, J.-H., and Shin, H.-S., 2008, A decade's experiences on the hydrofracturing in-situ stress measurement for tunnel construction in Korea. Proceedings of the Korean Society for Rock Mechanics Conference Spring 2008, 79-88 (in Korean with English abstract).
  28. Choi, W.-H. and Inoue, D., 2007, The characteristics of Quaternary Fault and segmentation along the Ulsan Fault System in the southeastern part of Korean Peninsula. In: Kee, W.-S., Kim, Y.-H., Song, K.-Y. (Ed.), Quaternary Tectonics of Southeastern Korea, The 5th Symposium on the Geology of Korea Special Publication 3, 79-90 (in Korean with English abstract).
  29. Choi, W.-H., 2003. Neotectonics of the Gyeongju-Ulsan area in the southeastern part of Korean Peninsula. Thesis of Ph.D., Seoul National University, Korea, 205p (in Korean with English abstract).
  30. Chwae, U. and 57 others, 1998, Final report of the re-evaluation to the design base earthquake considering the Yangsan Fault. Technical Note of Korea Institute of Geology, Mining and Materials, Korea Electric Power Corporation, KR-B-255-7-1998, 1,694p (in Korean).
  31. Cox, A. and Engerbretson, D., 1985, Change in motion of Pacific plate at 5 Myr BP. Nature, 313, 472-474. https://doi.org/10.1038/313472a0
  32. Delvaux, D. and Sperner, B., 2003, Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In: New Insights into Struructural Interpretation and Modelling (Nieuwland, D. Ed.). Geological Society, London, Special Publications, 212, 75-100.
  33. Delvaux, D., Moeys, R., Stapel, G., Petit, C. Levi, K., Miroshnichenko, A., Ruzhich, V., and San'kov, V., 1997, Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282, 1-38. https://doi.org/10.1016/S0040-1951(97)00210-2
  34. DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., 1990, Current plate motions. Geophysical Journal International, 101, 425-478. https://doi.org/10.1111/j.1365-246X.1990.tb06579.x
  35. DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21, 2,191-2,194. https://doi.org/10.1029/94GL02118
  36. Fournier, M., Jolivet, L., Davy, P., and Thoma, J.-C., 2004, Backarc extension and collision: an experimental approach to the tectonics of Asia. Geophysical Journal International, 157, 871-889. https://doi.org/10.1111/j.1365-246X.2004.02223.x
  37. Gerbova, V.G. and Tichomiorov, V.V., 1982, Russian school contribution to the birth and development of neotectonics, Geologische Rundschau, 71, 513-518. https://doi.org/10.1007/BF01822380
  38. Haimson, B.C., Lee, M.Y., and Song, I., 2003, Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress. International Journal of Rock Mechanics and Mining Sciences, 40, 1,243-1,256. https://doi.org/10.1016/S1365-1609(03)00119-9
  39. Hall, R., 2002, Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 353-431. https://doi.org/10.1016/S1367-9120(01)00069-4
  40. Han, M., Kim, Kim, K.-H., Son, M., Kang, S.Y., and Park, J.-H., 2016, Location of recent micro-earthquakes in the Gyeongju area. Geophysics and Geophysical Exploration, 19, 97-104 (in Korean with English abstract). https://doi.org/10.7582/GGE.2016.19.2.097
  41. Harbert, W. and Cox, A., 1989, Late Neogene motion of the Pacific plate. Journal of Geophysical Research, 94, 3,052-3,064. https://doi.org/10.1029/JB094iB03p03052
  42. Hasegawa, A., Nakajima, J., Uchida, M., Okada, T., Zhao, D., Matsuzawa, T., and Umino, N., 2009, Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: an overview. Gondwana Research, 16, 370-400. https://doi.org/10.1016/j.gr.2009.03.007
  43. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeв, D., and Muller, B., 2010, Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482, 3-15. https://doi.org/10.1016/j.tecto.2009.07.023
  44. Heki, K., Miyazaki, S., Takahashi, H., Kasahara, M., Kimata, F., Miura, S., Vasilenko, N.F., Ivashchenko, A., and An, K.-D., 1999, The Amurian Plate motion and current plate kinematics in eastern Asia. Journal of Geophysical Research, 104, 29,147-29,155.
  45. Hinsbergen, D.J.J.V., 2011, Short note on the use of Neotectonic and paleotectonic nomenclature. Turkish Journal of Earth Sciences, 20, 161-165.
  46. Hoe, S.Y. and Kyung, J.B., 2008, Fault Plane Solutions for the Recent Earthquakes in the Central Region of South Korea. Journal of Korean Earth Science Society, 29, 437-445. https://doi.org/10.5467/JKESS.2008.29.5.437
  47. Holt, W.E., Chamot-Rooke, N., Pichon, X.L., Haines, A.J., Shen-Tu, B., and Ren, J., 2000, Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. Journal of Geophysical Research, 105, 19,185-19,209. https://doi.org/10.1029/2000JB900045
  48. Holt, W.E., Li, M., and Haines, A.J., 1995, Earthquake strain rates and instantaneous relative motions within central and eastern Asia. Geophysical Journal International, 122, 569-593. https://doi.org/10.1111/j.1365-246X.1995.tb07014.x
  49. Hori, S., 2006, Seismic activity associated with the subducting motion of the Philippine Sea plate beneath the Kanto district Japan. Tectonophysics 417, 85-100. https://doi.org/10.1016/j.tecto.2005.08.027
  50. Iidaka, T., Takeda, T., Kurashimo, E., Kawamura, T., Kaneda, Y., and Iwasaki, T., 2004, Configuration of subducting Philippine Sea plate and crustal structure in the central Japan region. Tectonophysics, 388, 7-20. https://doi.org/10.1016/j.tecto.2004.07.002
  51. Iio, Y., Sagiya, T., Kobayashi, Y., and Shiozaki, I., 2002, Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands. Earth Planetary Science Letter, 203, 245-253. https://doi.org/10.1016/S0012-821X(02)00879-8
  52. Ikeda, Y., Iwasaki, T., Kano, K., Ito, T., Sato, H., Tajikara, M., Kikuchi, S., Higashinaka, M., Kozawa, T., and Kawanaka, T., 2009, Active nappe with a high slip rate: seismic and gravity profiling across the southern part of the Itoigawa-Shizuoka Tectonic Line, central Japan. Tectonophysics, 472, 72-85. https://doi.org/10.1016/j.tecto.2008.04.008
  53. Ikeda, Y., Iwasaki, T., Sato, H., Matsuta, N., and Kozawa, T., 2004, Seismic reflection profiling across the Itoigawa-Shizuoka Tectonic Line at Matsumoto, central Japan. Earth, Planets and Space, 56, 1,315-1,321. https://doi.org/10.1186/BF03353356
  54. Im, C.B. and 48 others, 2003, Development of Technology and Background for Seismic Safety Evaluation. Technical Note of the Ministry of Science and Technology of Korea, KINS/GR-255, 1,433p (in Korean with English abstract).
  55. Im, C.B., Chwae, U., Choi, S.-J., Choi, P., Ryoo, C.-R., Lee, S., Kim, C., Ahn, G.-O., Park, I., Kyung, J.B., Chang, T.W., and Son, M., 2006, Active Tectonic Survey around NPP area. Technical Note of the Institute of Education, Science, and Technology, Korea, KINS/GR-334, 248p (in Korean with English abstract).
  56. Ishida, M., 1992, Geometry and relative motion of the Philippine Sea Plate and Pacific Plate beneath the Kanto-Tokai district, Japan. Journal of Geophysical Research, 97, 489-513. https://doi.org/10.1029/91JB02567
  57. Jin, K., Kim, Y.-S., Kang, H.C., and Shin, H.C., 2013, Study on developing characteristics of the Quaternary Gusan Fault in Uljin, Gyeongbuk, Korea. Journal of the Geological Society of Korea, 49, 197-207 (in Korean with English abstract).
  58. Jun, M.-S. and Jeon, J.S., 2010, Focal mechanism in and around the Korean Peninsula. Geophysics and Geophysical Exploration, 13, 198-202 (in Korean with English abstract).
  59. Jung, M.K. and Kyung, J.B., 2013, Source characteristics of the recent earthquakes for seven years in the southwestern region of the Korean Peninsula. Journal of Korean Earth Science Society, 34, 59-68 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2013.34.1.59
  60. Kato, N., Sato, H., and Umino, N., 2006, Fault reactivation and active tectonics on the fore-arc side of the back-arc rift system, NE Japan. Journal of Structural Geology, 28, 2,011-2,022. https://doi.org/10.1016/j.jsg.2006.08.004
  61. Kearey, P., Klepeis, K.A. and Vine, F.J., 2009, Global Tectonics, 3rd Edition. Wiley-Blackwell, Chichester, U.K. 482p.
  62. Kee, W.-S., Kim, B.C., Hwang, J.H., Song, K.-Y., and Kihm, Y.-H., 2007, Structural characteristics of Quaternary reverse faulting on the Eapcheon Fault, SE Korea. Journal of the Geological Society of Korea, 43, 311-333 (in Korean, with English abstract).
  63. Kim, J.K., 1991, A study on the focal mechanism of the Hongsung earthquake from the P-wave polarity distributions. The Journal of Engineering Geology, 1, 121-136 (in Korean with English abstract).
  64. Kim, S.G., 1980, Seismicity of the Korean Peninsula and its vicinity. Journal of the Korean Institute of Mining Geology, 13, 51-63 (in Korean with English abstract).
  65. Kim, S.J., 2002, A Study on the estimation of design parameters appropriate to Korean rock masses. Thesis of Ph.D., Kyungpook National University, Korea, 320p (in Korean with English abstract).
  66. Kim, S.K., Jun, M.-S., and Jeon, J.-S., 2006, Recent research for the seismic activities and crustal velocity structure. Economic and Environmental Geology, 39, 369-384 (in Korean with English abstract).
  67. Kim, Y.-S. and Jin, K., 2006, Estimated earthquake magnitude from the Yugye Fault displacement on a trench section in Pohang, SE Korea. Journal of the Geological Society of Korea, 42, 79-94 (in Korean with English abstract).
  68. Kim, Y.-S., Jin, K., Choi, W.-H., and Kee, W.-S., 2011a, Understanding of active faults: a review for recent researches. Journal of the Geological Society of Korea, 47, 723-752 (in Korean with English abstract).
  69. Kim, Y.-S., Kihm, J.-H., and Jin, K., 2011b, Interpretation of the rupture history of a low slip-rate active fault by analysis of progressive displacement accumulation: an example from the Quaternary Eupcheon Fault, SE Korea. Journal of the Geological Society, London, 168, 273-288. https://doi.org/10.1144/0016-76492010-088
  70. Kim, Y.-S., Part, J.Y., Kim, J.H., Shin, H.C., and Sanderson, D.J., 2004, Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast Korea. The Island Arc, 13, 403-415. https://doi.org/10.1111/j.1440-1738.2004.00435.x
  71. KMA, Korea Meteorological Administration, http://www.kma.go.kr/.
  72. Kreemer, C., Holt, W.E., and Haines, A.J., 2003, An integrated global model of present-day plate motions and plate boundary deformation. Geophysical Journal International, 154, 8-34. https://doi.org/10.1046/j.1365-246X.2003.01917.x
  73. KRNA, 2006, Joint report on the environmental impact from the Wonhyo Tunnel, Gyeongbu Express Line. Korea Rail Network Authority.
  74. Kyung, J.B. and Chang, T.W., 2001, The latest fault movement on the Northern Yangsan fault zone around the Yugye-ri area, southeast Korea. Journal of the Geological Society of Korea, 37, 563-577 (in Korean with English abstract).
  75. Kyung, J.B. and Lee, K., 2006, Active fault study of the Yangsan Fault System and Ulsan Fault System, southeastern part of the Korean Peninsula. Journal of the Korean Geophysical Society, 9, 219-230 (in Korean with English abstract).
  76. Kyung, J.B., 1997, Paleoseismological study on the Midnorthern part of Ulsan Fault by trench method. The Journal of Engineering Geology, 7, 81-90 (In Korean with English abstract).
  77. Kyung, J.B., 2003, Paleoseismology of the Yangsan Fault, southeastern part of the Korean Peninsula. Annals of Geophysics, 46, 983-996.
  78. Kyung, J.-B., Lee, K., and Okada, A., 1999a. A paleoseismological study of the Yangsan fault - analysis of deformed topography and trench survey. Journal of the Korean Geophysical Society 2, 155-168 (in Korean with English abstract).
  79. Kyung, J.-B., Lee, K., Okada, A., Watanabe, M., Suzuki, Y., and Takemura, K., 1999b. Study of fault characteristics by trench survey in the Sangchon-ri area in the southern part of Yangsan fault, southeastern Korea. Journal of Korean Earth Science Society 20, 101-110 (in Korean with English abstract).
  80. Lallemand, S., Heuret, A., and Boutelier, D., 2005, On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems, 6, Q09006, doi:10.1029/2005GC000917.
  81. Larson, K.M., Burgmann, R., Bilham, R. and Freymueller, J.T., 1999. Kinematics of the India-Eurasia collision zone from GPS measurements. Journal of Geophysical Research, 104, 1,077-1,093. https://doi.org/10.1029/1998JB900043
  82. Lee H.-K. and Yang, J.-S., 2003, ESR dating of the Wangsan fault, South Korea. Quaternary Science Reviews, 22, 1,339-1,343. https://doi.org/10.1016/S0277-3791(03)00018-0
  83. Lee, B., 1998, Principles of rock mechanics. Dongmyeongsa, Seoul, p 631.
  84. Lee, B.J., Ryoo, C.-R., and Chwae, U., 1999, Quaternary faults in the Yangnam area, Kyongju, Korea. Journal of the Geological Society of Korea, 35, 1-14 (in Korean with English abstract).
  85. Lee, H.-K. and Schwarcz, H.P., 2001, ESR dating of the subsidiary faults in the Yangsan fault system, Korea. Quaternary Science Reviews, 20, 999-1003. https://doi.org/10.1016/S0277-3791(00)00055-X
  86. Lee, H.K. and Yang, J.-S., 2003, ESR dating of the Wangsan fault, South Korea. Quaternary Science Reviews, 22, 1,339-1,343. https://doi.org/10.1016/S0277-3791(03)00018-0
  87. Lee, H.-K. and Yang, J.-S., 2005, ESR dating of the Ikwang fault. Journal of the Geological Society of Korea, 41, 369-384 (in Korean with English abstract).
  88. Lee, J., Rezaei, S., Hong, Y., Choi, J.-H., Choi, J.-H., Choi, W.-H., Rhee, K.-W., and Kim, Y.-S., 2015, Quaternary fault analysis through a trench investigation on the northern extension of the Yangsan fault at Dangu-ri, Gyungjusi, Gyeongsanbuk-do. Journal of the Geological Society of Korea, 51, 471-485 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.5.471
  89. Lee, J.B. and Chang, C., 2007, Current state of Stress in south-east Korea. The Journal of Engineering Geology, 17, 299-307 (in Korean with English abstract).
  90. Lee, K. and Yang, W.-S., 2006, Historical Seismicity of Korea. Bulletin of the Seismological Society of America 96, 846-855. https://doi.org/10.1785/0120050050
  91. Lee, K., 1998. Historical earthquake data of Korean. Journal of the Korea Geophysical Society 1, 3-22 (in Korean with English abstract).
  92. Lee, Y.H., 2003. Quaternary faults in the eastern area of the Ulsan fault (Korea). Thesis of Master, Pusan National University, Korea, 74p (in Korean with English abstract).
  93. Lee, Y.H., Son, M., Ryoo, C.-R., Kim, I.-S., and Chwae, U., 2002, Quaternary faults developed in the Bulguk-dong, Gyeongju of the eastern part of the Ulsan fault zone, Korea: Jinti fault, Hwalseong-ri fault, Gaegok fault. Proceedings of the Geological Society of Korea Conference Fall 2002, 157 (in Korean).
  94. Li, Y., Wang, C., Dai, J., Xu, G., Hou, Y., and Li, X., 2015, Propagation of the deformation and growth of the Tibetan-Himalayan orogen: a review. Earth-Sciences Reviews, 143, 36-61. https://doi.org/10.1016/j.earscirev.2015.01.001
  95. Lim, H.U. and Lee, C.I., 1991, The trends and variations of natural stresses in rock masses with depth. Tunnel & Underground Space, Journal of Korean Society for Rock Mechanics, 1, 91-101 (in Korean with English abstract).
  96. Matsumoto, S., Nakao, S., Ohkura, T., Miyazaki, M., Shimizu, H., Abe, Y., Inoue, H., Nakamoto, M., Yoshikawa, S., and Yamashita, Y., 2015, Spatial heterogeneities in tectonic stress in Kyushu, Japan and their relation to a major shear zone. Earth, Planets and Space, 67, 172, doi:10.1186/s40623-015-0342-8.
  97. Minster, J.B. and Jordan, T.H., 1978, Present-day plate motions. Journal of Geophysical Research, 83, 5,331-5,354. https://doi.org/10.1029/JB083iB11p05331
  98. Molnar, P. and Tapponnier, P., 1975, Cenozoic tectonics of Asia: effects of a continental collision. Science, 189, 419-426. https://doi.org/10.1126/science.189.4201.419
  99. Moores, E.M. and Twiss, R.J., 1995, Tectonics. W.H. Freeman and Company, USA, 415p.
  100. Nakajima, J. and Hasegawa, A., 2007, Subduction of the Phillipine Sea plate beneath southwestern Japan: slab geometry and its relationship to arc magmatism. Journal of Geophysical Research, 112, B08306, doi: 10.1029/2006JB004770, 2007.
  101. Nakajima, J., Hirose, F., and Hasegawa, A., 2009, Seismotectonics beneath the Tokyo metropolitan area, Japan: effect of slab-slab contact and overlap on seismicity. Journal of Geophysical Research, 114, B08309.
  102. Neuendorf, K.K.E., Mehl, Jr., J.P., and Jackson, J.A., 2005, Glossary of geology 5th edition, Alexandria, Verginia, 779p.
  103. NIED F-net, http://www.fnet.bosai.go.jp/top.php, National Research Institute for Earth Science and Disaster Resilience, Japan.
  104. Obruchev, V.A., 1948, Osnovnyje certy kinetiti i plastiki neotectoniki. Izvestiya Akademii Nauk UzSSR Sertiya Geologicheskaya, 5 (in Russian).
  105. Okada, A., Takemura, K., Watanabe, M., Suzuki, Y., Kyung, J.B., Chae, Y.H., Taniguchi, K., Ishiyama, T., Kawabata, D., Kaneda, H., and Naruse, T., 1999, Trench excavation survey across the Ulsan (active) fault at Kalgok-ri, Kyongju City, Southeast of Korea. Journal of Geography, 108, 276-288 (in Japanese). https://doi.org/10.5026/jgeography.108.276
  106. Okada, A., Watanabe, M., Sato, H., Jun, M.S., Jo, W.R., Kim, S.K., Jeon, J.S., Chi, H.C., and Oike, K., 1994, Active fault topography and trench survey in the central part of the Yangsan fault, south Korea. Journal of Geography, 103, 111-126 (in Japanese). https://doi.org/10.5026/jgeography.103.2_111
  107. Oskin, M. and Stock, J., Marine incursion synchronous with plate-boundary localization in the Gulf of California. Geology, 31, 23-26.
  108. Park, J.C., Kim, W., Chung, T.W., Baag, C.E., and Ree, J.H., 2007, Focal mechanism of recent earthquakes in the Southern Korean Peninsula. Geophysical Journal International, 169, 1,103-1,114. https://doi.org/10.1111/j.1365-246X.2007.03321.x
  109. Park, Y., Ree, J.-H., and Yoo, S.-H., 2006, Fault slip analysis of Quaternary faults in southeastern Korea. Gondwana Research, 9, 118-125. https://doi.org/10.1016/j.gr.2005.06.007
  110. Patriat, P. and Achache, J., 1984, India-Asia collision chronology has implication for crustal shortening and driving mechanism of plates. Nature, 311, 615-621. https://doi.org/10.1038/311615a0
  111. Pavlides, S.B., 1989, Looking for a definition of Neotectonics. Terra Nova, 1, 233-235. https://doi.org/10.1111/j.1365-3121.1989.tb00362.x
  112. Petit, C. and Fournier, M., 2005, Present-day velocity and stress fields of the Amurian Plate from thin-shell finiteelement modelling. Geophysical Journal International, 160, 357-369.
  113. Pollitz F.F., 1986, Pliocene change in Pacific-plate motion. Nature, 320, 738-741. https://doi.org/10.1038/320738a0
  114. Ree, J.-H. and Kwon, S.-T., 2005, The Wangsan Fault: one of the most 'active' faults in South Korea?. Geosciences Journal, 9, 223-226. https://doi.org/10.1007/BF02910581
  115. Ryoo, C.-R., 2009, A report for the Quaternary Gaegok 6 Fault developed in the Mid-eastern part of Ulsan Fault Zone, Korea. Economic and Environmental Geology, 42, 635-643 (in Korean with English abstract).
  116. Ryoo, C.-R., Chwae, U., Choi, S.-J., and Son, M., 2001, Quaternary faults in Hwalseong-ri, Oedong-up, Gyeongju, Korea. KIGAM Bulletin, 5, 24-33 (in Korean with English abstract).
  117. Ryoo, C.-R., Lee., B.J., Son, M., Lee, Y.H., Choi, S.-J., and Chwae, U., 2002, Quaternary faults in Gaekok-ri, Oedong-eup, Gyeongju, Korea. Journal of the Geological Society of Korea, 38, 309-323 (in Korean with English abstract).
  118. Ryoo, C.-R., Yang, K., Lee, S.-W., and Kim, I.-S., 1996, Quaternary fault in the vicinity of the Ulsan fault. The Journal, College of Education, Pusan National University, Pusan, Korea, 33, 311-327 (in Korean with English abstract).
  119. Sato, H. and Amano, K., 1991, Relationship between tectonics, volcanism, sedimentation and basin development, Late Cenozoic, central part of Northern Honshu, Japan. Sedimentary Geology, 74, 323-343. https://doi.org/10.1016/0037-0738(91)90071-K
  120. Sato, H., 1994, The relationship between late Cenozoic tectonic events and stress field and basin development in northeast Japan. Journal of Geophysical Research, 99, 22,261-22,274. https://doi.org/10.1029/94JB00854
  121. Sato, H., Iwasaki, T., Kawasaki, S., Ikeda, Y., Matsuta, N., Takeda, T., Hirata, N., and Kawanaka, T., 2004, Formation and shortening deformation of a back-arc rift basin revealed by deep seismic profiling, central Japan. Tectonophysics, 388, 47-58. https://doi.org/10.1016/j.tecto.2004.07.004
  122. Schellart, W.P. and Rawlinson, N., 2010, Convergent plate margin dynamics: new perspectives from structural geology, geophysics and geodynamic modelling. Tectonophysics, 483, 4-19. https://doi.org/10.1016/j.tecto.2009.08.030
  123. Schellart, W.P., Stegman, D.R., and Freeman, J., 2008, Global trench migration velocities and slab migration induced upper mantle volume fluxes: constraints to find and Earth reference frame based on minimizing viscous dissipation. Earth-Science Reviews, 88, 118-144. https://doi.org/10.1016/j.earscirev.2008.01.005
  124. Sella, G.F., Dixon, T.H., and Mao, A., 2002, REVEL: a model for recent plate velocities from space geodesy. Journal of Geophysical Research, 107, B2081. doi:10.1029/2000JB000033.
  125. Seno, T., Sakurai, T., and Stein, S., 1996, Can the Okhotsk plate be discriminated from the North American plate?. Journal of Geophysical Research, 101, 11,305-11,315. https://doi.org/10.1029/96JB00532
  126. Seno, T., Stein, S., Gripp., and A.E., 1993, A model for the motion of the Phillipine Sea Plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research, 98, 17,941-17,948. https://doi.org/10.1029/93JB00782
  127. Sim, T.-M. and 53 others, Technical development for geological/seismic safety evaluation basis of NPP sites. Technical Note of the Institute of Education, Science, and Technology of Korea, KINS/GR-437, 337p (in Korean with English abstract).
  128. Son, M., Kim, J,-S., Chong, H.-Y., Lee, Y.H., and Kim, I.-S., 2007, Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications. Korean Journal of Petroleum Geology, 13, 1-16 (in Korean with English abstract).
  129. Son, M., Lee, Y.H., Kim, I.-S., and Chang, T.W., 2001, A Quaternary reverse fault (Chail fault) in the Chail-Maeul, Buk-gu, Ulsan, Korea. Proceedings of the Geological Society of Korea Conference Fall 2001, 65 (in Korean).
  130. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Cho, H., and Sohn, Y.K., 2015, Miocene tectonic evolution of the basins and fault systems, SE Korea: dextral, simple shear during the East Sea (Sea of Japan) opening. Journal of the Geological Society, 172, 664-680, doi:10.1144/jgs2014-079.
  131. Tada, R., 1994, Paleoceanographic evolution of the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecoloy, 108, 397-405.
  132. Tapponnier, P., Mercier, J.L., Proust, F., Andrieux, J., Armijo, R., Bassoullet, J.P., Brunel, M., Burg, J.P., Colchen, M., Dupre., Girardeau, J., Marcoux, J., Mascle, G., Matte, P., Nicolas, A., Li, T., Xiao, X., Chang, C., Lin, P., Li, G., Wang, N., Chen, G., Han, T., Wang, X., Den, W., Zhen, H., Sheng, H., Cao, Y., Zhou, J., and Qiu, H., 1981, The Tibetan side of the India-Eurasia collision, Nature, 294, 405-410. https://doi.org/10.1038/294405a0
  133. Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J., 2001, Oblique stepwise rise and growth of the Tibet Plateau. Science, 294, 1,671-1,677, doi: 10.1126/science.105978.
  134. Uyeda, S. and Kanamori, H., 1979, Back-arc opening and the mode of subduction. Journal of Geophysical Research, 84, 1,049-1,061. https://doi.org/10.1029/JB084iB03p01049
  135. Vergnolle, M., Calais, E., and Dong, L., 2007, Dynamics of continental deformation in Asia. Journal of Geophysical Research, 112, doi:10.1029/2006JB004807 (B11403).
  136. Wallace, L.M., Ellis, S., Miyao, K., Miura, S., Beavan, J., and Goto, J., 2009, Enigmatic, highly active left-lateral shear zone in southwest Japan explained by aseismic ridge collision. Geology, 37, 2, doi:10.1130/G25221A.1.
  137. Wang, C., Dai, J., Zhao, X., Li, Y., Graham, S.A., He, D., and Meng, J., 2014, Outward-growth of the Tibetan Plateau during the Cenozoic: a review. Tectonophysics, 621, 1-43, http://dx.doi.org/10.1016/j.tecto.2014.01.036.
  138. Wang, K., Wada, I., and Ishikawa, Y., 2004, Stress in the subducting slab beneath southwest Japan and relation with plate geometry, tectonic forces, slab dehydration, and damaging earthquakes. Journal of Geophysical Research, 109, B08304, doi:10.1029/2003JB002888.
  139. Wang, Q., Zhang, P., Freymueller, J., Bilham, R., Larson, K., Lai, X., You, X., Niu, Z., Wu, J., Li, Y., Liu, J., Yang, Z., and Chen, Q., 2001, Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294, 574-577. https://doi.org/10.1126/science.1063647
  140. Wang, Z. and Zhao, D., 2006, Vp and Vs tomography of Kyushu, Japan: new insight into arc magmatism and forearc seismotectonics. Physics of the Earth and Planetary Interiors, 157, 269-285. https://doi.org/10.1016/j.pepi.2006.04.008
  141. Wei, D.-P. and Seno, T., 1998, Determination of the Amurian plate motion, in mantledynamics and plate interactions in east Asia. In: Flower, M., Chung, S.-L., Lo, C.-H., Lee, T.-Y. (Eds.), AGU Geodynamics Series, vol. 27. American Geophysical Union, Washington, DC, 419p.
  142. Wessel, P. and Kroenke, L.W., 2000, Ontong Java Plateau and late Neogene changes in Pacific plate motion. Journal of Geophysical Research, 1055, 28,255-28,277.
  143. Winslow, M.A., 1986, Neotectonics: Concepts, Definitions, and Significance. Neotectonics, 1, 1-5.
  144. Xu, Z.H., Wang, S.Y., Huang, Y.R., and Gao, A., 1992, Tectonic stress field of china inferred from a large number of small earthquakes. Journal of Geophysical Research, 97, 11,867-11,877. https://doi.org/10.1029/91JB00355
  145. Yang, J.S., 2006, Quaternary fault activity in the southeastern part of the Korean Peninsula. Thesis of Ph.D., Kangwon National University, Korea, 382p (in Korean with English abstract).
  146. Yin, A. and Harrison, T.M., 2000, Geologic evolution of the Himalayan-Tibetan Orogen. Anuual Review of Earth and Planetary Sciences, 28, 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
  147. Yin, A., 2010, Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics, 488, 293-325. https://doi.org/10.1016/j.tecto.2009.06.002
  148. Yoon, S.H. and Chough, S.K., 1995, Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea(Sea of Japan). Geological Society of America Bulletin, 107, 83-97. https://doi.org/10.1130/0016-7606(1995)107<0083:RSSITE>2.3.CO;2
  149. Yoon, S.H., Sohn, Y.K., and Chough, S.K., 2014, Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan). Marine Geology, 352, 70-88. https://doi.org/10.1016/j.margeo.2014.03.004
  150. Zang, S.X., Chen, Q.Y., Ning, J.Y., Shen, Z.K., and Liu, Y.G., 2002, Motion of the Philippine Sea plate consistent with the NUVEL-1A model. Geophysical Journal International, 150, 809-819. https://doi.org/10.1046/j.1365-246X.2002.01744.x
  151. Zhang, P.Z., Shen, Z.K., Wang, M., Gan, W.J., Burgmann, R., Molnar, P., Wang, Q., Niu, Z.J., Sun, J.B., Wu, J., Sun, H., and You, X., 2004, Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32, 809-812. https://doi.org/10.1130/G20554.1
  152. Zhao, D. and Ohtani, E., 2009, Deep slab subduction and dehydration and their geodynamic consequences: evidence from seismology and mineral physics. Gondwana Research, 16, 401-413. https://doi.org/10.1016/j.gr.2009.01.005
  153. Zhao, D., 2012, Tomography and dynamics of Western-Pacific subduction zones. Monographs on Environment, Earth and Planets, 1, 1-70. https://doi.org/10.5047/meep.2012.00101.0001
  154. Zhao, D., 2015, The 2011 Tohoku earthquake (Mw 9.0) sequence and subduction dynamics in Western Pacific and East Asia. Journal of Asian Earth Sciences, 98, 26-49. https://doi.org/10.1016/j.jseaes.2014.10.022
  155. Zonenshain, L.P. and Savostin, L.A., 1981, Geodynamics of the Baikal rift zone and plate tectonics of Asia. Tectonophysics, 76, 1-45. https://doi.org/10.1016/0040-1951(81)90251-1

Cited by

  1. Geometry and kinematics of fault systems in the Uiseong block of the Gyeongsang Basin, and their roles on the basin evolution vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.241
  2. Deformation features and history of the Yangsan Fault Zone in the Eonyang-Gyeongju area, SE Korea vol.53, pp.1, 2017, https://doi.org/10.14770/jgsk.2017.53.1.95
  3. Geometric and kinematic characteristics of the Quaternary fault at Seooe site, in Goseong-gun, Gyeongsangnam-do vol.53, pp.1, 2017, https://doi.org/10.14770/jgsk.2017.53.1.115
  4. Editorial : Neotectonic and Magma Evolution in the Korean Peninsula and Its Vicinity vol.25, pp.3, 2016, https://doi.org/10.7854/JPSK.2016.25.3.165
  5. The Bonggil Pseudotachylyte, SE Korea: Its occurrence and characteristics vol.53, pp.1, 2017, https://doi.org/10.14770/jgsk.2017.53.1.173
  6. Paleostress reconstruction using fault-slip data from drill core: Application to the interpretation of the Quaternary faulting events in SE Korea vol.53, pp.1, 2017, https://doi.org/10.14770/jgsk.2017.53.1.193