• Title/Summary/Keyword: 중해상도 위성영상

Search Result 160, Processing Time 0.033 seconds

Runoff Curve Number Estimation for Cover and Treatment Classification of Satellite Image(I): - CN Estimation - (위성영상 피복분류에 대한 CN값 산정(I): - CN값 산정 -)

  • Bae, Deg-Hyo;Lee, Byong-Ju;Jeong, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.985-997
    • /
    • 2003
  • The objective of this study is to propose Runoff Curve Numbers(CNs) for land cover and treatment classification of satellite image. For this purpose, land cover classifications by using satellite image in addition to the exiting SCS's land cover and treatment classifications studies and land cover classifications suggested by Ministry of Environment are selected to provide CNs depending on the classifications. CNs estimation method is statistical approach that is suggested by Hjelmfelt(1991). Result of this study may contribute to use efficiently for the estimation of CNs in using satellite image.

Classification of Forest Type Using High Resolution Imagery of Satellite IKONOS (고해상도 IKONOS 위성영상을 이용한 임상분류)

  • 정기현;이우균;이준학;김권혁;이승호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.275-284
    • /
    • 2001
  • This study was carried out to evaluate high resolution satellite imagery of IKONOS for classifying the land cover, especially forest type. The IKONOS imagery of 11km$\times$11km size was taken on April 24, 2000 in Bong-pyoung Myun Pyungchang-Gun, Kangwon Province. Land cover classes were water, coniferous evergreen, Larix leptolepis, broad-leaved tree, bare land, farm land, grassland, sandy soil and asphalted area. Supervised classification method with algorithm of maximum likelihood was applied for classification. The terrestrial survey was also carried out to collect the reference data in this area. The accuracy of the classification was analyzed with the items of overall accuracy, producer's accuracy, user's accuracy and k for test area through the error matrix. In the accuracy analysis of the test area, overall accuracy was 94.3%, producer's accuracy was 77.0-99.9%, user's accuracy was 71.9-100% and k and 0.93. Classes of bare land, sandy soil and farm land were less clear than other classes, whereas classification result of IKONOS in forest area showed higher performance than that of other resolution(5-30m) satellite data.

A Study on the Geometric Correction Accuracy Evaluation of Satellite Images Using Daum Map API (Daum Map API를 이용한 위성영상의 기하보정 정확도 평가)

  • Lee, Seong-Geun;Lee, Ho-Jin;Kim, Tae-Geun;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.183-196
    • /
    • 2016
  • Ground control points are needed for precision geometric correction of satellite images, and the coordinates of a high-quality ground control point can be obtained from the GPS measurement. However, considering the GPS measurement requires an excessive amount o f t ime a nd e fforts, there is a need for coming up with an alternative solution to replace it. Therefore, we examined the possibility of replacing the existing GPS measurement with coordinates available at online maps to acquire the coordinates of ground control points. To this end, we examined error amounts between the coordinates of ground control points obtained through Daum Map API, and them compared the accuracies between three types of coordinate transformation equations which were used for geometric correction of satellite images. In addition, we used the coordinate transformation equation with the highest accuracy, the coordinates of ground control point obtained through the GPS measurement and those acquired through D aum M ap A PI, and conducted geometric correction on them to compare their accuracy and evaluate their effectiveness. According to the results, the 3rd order polynomial transformation equation showed the highest accuracy among three types of coordinates transformation equations. In the case of using mid-resolution satellite images such as those taken by Landsat-8, it seems that it is possible to use geometrically corrected images that have been obtained after acquiring the coordinates of ground control points through Daum Map API.

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Lee, Tae-Yoon;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.297-309
    • /
    • 2007
  • The first Korean geostationary weather satellite, Communications, Oceanography and Meteorology Satellite (COMS) will be launched in 2008. The ground station for COMS needs to perform geometric correction to improve accuracy of satellite image data and to broadcast geometrically corrected images to users within 30 minutes after image acquisition. For such a requirement, we developed automated and fast geometric correction techniques. For this, we generated control points automatically by matching images against coastline data and by applying a robust estimation called RANSAC. We used GSHHS (Global Self-consistent Hierarchical High-resolution Shoreline) shoreline database to construct 211 landmark chips. We detected clouds within the images and applied matching to cloud-free sub images. When matching visible channels, we selected sub images located in day-time. We tested the algorithm with GOES-9 images. Control points were generated by matching channel 1 and channel 2 images of GOES against the 211 landmark chips. The RANSAC correctly removed outliers from being selected as control points. The accuracy of sensor models established using the automated control points were in the range of $1{\sim}2$ pixels. Geometric correction was performed and the performance was visually inspected by projecting coastline onto the geometrically corrected images. The total processing time for matching, RANSAC and geometric correction was around 4 minutes.

The comparative analysis of component-substitution based image fusion algorithm by simulated annealing (담금질 모사기법을 이용한 성분대입기반 영상융합 알고리즘의 평가)

  • Choi, Jae-Wan;Kim, Hye-Jin;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.74-79
    • /
    • 2008
  • 영상 융합은 센서의 자료 저장 능력과 센서에 들어오는 방사에너지 감지의 한계를 해결하고 고해상도의 멀티스펙트럴 영상을 생성할 수 있다는 측면에서 중요한 의의를 지닌다. 특히, 성분대입(component-substitution) 기반의 영상융합 기법은 대용량의 자료를 빠르게 처리할 수 있고, 융합된 영상의 분광왜곡이 적다는 장점을 지니고 있다. 본 연구에서는 최적화기법 중의 하나인 담금질 모사기법(Simulated Annealing, SA)을 이용하여 다양한 성분대입 기반 영상융합 알고리즘들을 분석 및 평가하였다. 담금질 모사기법은 원하는 목적함수가 지역적 최소값이 아닌 광역적 최소값에 수렴이 가능하도록 하는 기법으로 다양한 분야에서의 광역 최적화 기법에 사용된다. 융합 기법의 최적화된 변수를 추출하기 위하여 인위적으로 공간해상도를 낮춘 위성영상을 입력자료로, 원 멀티스펙트럴영상을 참조자료로 사용하였으며, 두 영상간의 분광유사 척도를 담금질 모사 기법의 목적 함수로 구성하였다. 이를 통해 해당 목적함수의 광역적 최소값을 추출하고, 최종적으로 해당 영상에 융합 기법 별 최적화된 변수를 결정하였다. 제안된 최적화 변수의 평가를 위하여 IKONOS 위성영상에 융합을 적용하고, 알고리즘별 분광왜곡량을 비교하였으며 이를 통하여 고해상도 위성영상에 가장 적합한 성분대입 기반 영상융합 기법 및 그에 따른 최적화 변수를 도출할 수 있었다.

  • PDF

Development of Climate Data Management System Based on Satellite Imagery for Asia-Pacific Regions (아시아-태평양 지역 대상 위성영상 기반 기후 자료 관리 시스템 개발)

  • Park, Jihoon;Park, Kyungwon;Jung, Imgook;Cho, Wonil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.23-23
    • /
    • 2019
  • 본 연구의 목적은 아시아-태평양 지역을 대상으로 위성영상 기반 고해상도의 신뢰성이 있고 쉽게 접근할 수 있는 강수 자료를 제공하는 데 있다. 본 연구에서 개발한 기후 관리 시스템은 총 3가지의 위성자료(원시위성자료, 편의보정한 위성자료, 공간상세화한 위성자료)를 제공한다. 위성자료의 공간해상도는 $0.1^{\circ}$, $0.05^{\circ}$이며, 시간해상도는 1 day이다. 비교적 신뢰성이 높은 기후 자료가 구축된 한반도를 대상으로 위성영상 편의보정, 공간상세화 기법을 검증하고, 개발한 기법을 아시아-태평양에 위치한 바누아투에 적용하여 기후 자료를 생산하였다. 원시위성자료는 TRMM (Tropical Rainfall Measurement Mission) 위성과 GPM (Global Precipitation Mission) 위성을 사용하여 구축하였다. 편의보정은 GRA-IDW (Geographical Ratio Analysis-Inverse Distance Weighted), GRA-Kriging, QM (Quantile Mapping) 기법을 검토하여 본 연구에 적합한 알고리즘을 개발하고 이 중 최적의 결과를 보여주는 GRA-IDW 기법을 최종적으로 선정하였다. 공간상세화는 PRISM (Parameter-elevation Regressions on Independent Slopes Model)을 선정하여 수행하였다. 원시위성자료를 검증한 결과를 살펴보면 상관계수는 1998년부터 2017년까지 0.775로 비교적 정확도가 높게 나왔다. bias 값은 원시위성자료 값이 지상관측자료보다 과대추정하는 것으로 나타났다. 최종적인 편의보정 기법으로 GRA-IDW 기법을 선정하여 편의보정한 위성자료를 생산하였다. 공간상세화한 위성자료를 검증한 결과를 앞서 분석한 원시위성자료, 편의보정한 위성자료와 비교하면, 공간상세화를 수행하기 전보다 상관계수는 다소 작아지고, RMSE는 커지는 것으로 나타나나 그 차이가 크지 않아 공간상세화한 위성자료를 응용분야에 직접 사용할 수 있을 것으로 분석된다. 본 연구를 통해 개발된 기법을 활용하면 아시아-태평양에 신뢰성 있는 기후 관측 자료를 제공할 수 있다. 향후 본 연구에서 선정한 대상지역 이외에 기상관측소의 수가 희박하고 불균등하게 분포하고 있는 아시아-태평양 지역에 본 과업에서 개발한 시스템을 적용하여 신뢰성 있는 기후 자료를 제공할 수 있을 것으로 사료된다.

  • PDF

Automated Improvement of RapidEye 1-B Geo-referencing Accuracy Using 1:25,000 Digital Maps (1:25,000 수치지도를 이용한 RapidEye 위성영상의 좌표등록 정확도 자동 향상)

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.505-513
    • /
    • 2014
  • The RapidEye can acquire the 6.5m spatial resolution satellite imagery with the high temporal resolution on each day, based on its constellation of five satellites. The image products are available in two processing levels of Basic 1B and Ortho 3A. The Basic 1B image have radiometric and sensor corrections and include RPCs (Rational Polynomial Coefficients) data. In Korea, the geometric accuracy of RapidEye imagery can be improved, based on the scaled national digital maps that had been built. In this paper, we present the fully automated procedures to georegister the 1B data using 1:25,000 digital maps. Those layers of map are selected if the layers appear well in the RapidEye image, and then the selected layers are RPCs-projected into the RapidEye 1B space for generating vector images. The automated edge-based matching between the vector image and RapidEye improves the accuracy of RPCs. The experimental results showed the accuracy improvement from 2.8 to 0.8 pixels in RMSE when compared to the maps.

Epipolar Resampling from Kompsat-2 and Kompsat-3 (아리랑 위성 2호와 3호를 이용한 이종 영상 간 에피폴라 영상 생성)

  • Song, Jeong-Heon;Oh, Jae-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.156-166
    • /
    • 2014
  • As of 2014, KARI (Korea Aerospace Research Institute) operates two high-resolution satellites such as Kompsat-2 and Kompsat-3. Kompsat-3 has capability of in-track stereo images acquisition but it is quite limited because the stereo mode lowers the spatial coverage in a trajectory. In this paper we analyze the epipolar geometry from the heterogeneous Kompsat-2 and Kompsat-3 image combination to epipolar resample them for 3D spatial data acquisition. The analysis was carried out using the piecewise approach with RPCs (Rational Polynomial Coefficients) and the result showed the parabolic epipolar curve pattern. We also concluded that the third order polynomial transformation is required for epipolar image resampling. The resampled image pair showed 1 pixel level of y-parallax and can be used for 3D display and digitizing.

Present Status and Future Prospect of Satellite Image Uses in Water Resources Area (수자원분야의 위성영상 활용 현황과 전망)

  • Kim, Seongjoon;Lee, Yonggwan
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.105-123
    • /
    • 2018
  • Currently, satellite images act as essential and important data in water resources, environment, and ecology as well as information of geographic information system. In this paper, we will investigate basic characteristics of satellite images, especially application examples in water resources. In recent years, researches on spatial and temporal characteristics of large-scale regions utilizing the advantages of satellite imagery have been actively conducted for fundamental hydrological components such as evapotranspiration, soil moisture and natural disasters such as drought, flood, and heavy snow. Furthermore, it is possible to analyze temporal and spatial characteristics such as vegetation characteristics, plant production, net primary production, turbidity of water bodies, chlorophyll concentration, and water quality by using various image information utilizing various sensor information of satellites. Korea is planning to launch a satellite for water resources and environment in the near future, so various researches are expected to be activated on this field.

Research and Application of Satellite Orbit Simulation for Analysis of Optimal Satellite Images by Disaster Type : Case of Typhoon MITAG (2019) (재난유형별 최적 위성영상 분석을 위한 위성 궤도 시뮬레이션 연구 및 적용 : 태풍 미탁(2019) 사례)

  • So-Mang, LIM;Ki-Mook, KANG;Eui-Ho, HWANG;Wan-Sik, YU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.210-221
    • /
    • 2022
  • In order to promptly respond to disasters, the era of new spaces has opened where satellite images with various characteristics can be used. As the number of satellites in operation at home and abroad increases and the characteristics of satellite sensors vary, it is necessary to find satellite images optimized for disaster types. Disaster types were divided into typhoons, heavy rains, droughts, forest fires, etc., and the optimal satellite images were selected for each type of disaster considering satellite orbits, active/passive sensors, spatial resolution, wavelength bands, and revisit cycles. Each satellite orbit TLE (Two Line Element) information was applied to the SGP4 (Simplified General Perturbations version 4) model to develop a satellite orbit simulation algorithm. The developed algorithm simulated the satellite orbit at 10-second intervals and selected an accurate observation area by considering the angle of incidence of each sensor. The satellite orbit simulation algorithm was applied to the case of Typhoon Mitag in 2019 and compared with the actual satellite list. Through the analyzed results, the time and area of the captured image and the image to be recorded were analyzed within a few seconds to select the optimal satellite image according to the type of disaster. In the future, it is intended to serve as a basis for building a system that can promptly request and secure satellite images in the event of a disaster.