• Title/Summary/Keyword: 중증도 보정

Search Result 36, Processing Time 0.02 seconds

The Comparison of Risk-adjusted Mortality Rate between Korea and United States (한국과 미국 의료기관의 중증도 보정 사망률 비교)

  • Chung, Tae-Kyoung;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.371-384
    • /
    • 2013
  • The purpose of this study was to develop the risk-adjusted mortality model using Korean Hospital Discharge Injury data and US National Hospital Discharge Survey data and to suggest some ways to manage hospital mortality rates through comparison of Korea and United States Hospital Standardized Mortality Ratios(HSMR). This study used data mining techniques, decision tree and logistic regression, for developing Korea and United States risk-adjustment model of in-hospital mortality. By comparing Hospital Standardized Mortality Ratio(HSMR) with standardized variables, analysis shows the concrete differences between the two countries. While Korean Hospital Standardized Mortality Ratio(HSMR) is increasing every year(101.0 in 2006, 101.3 in 2007, 103.3 in 2008), HSMR appeared to be reduced in the United States(102.3 in 2006, 100.7 in 2007, 95.9 in 2008). Korean Hospital Standardized Mortality Ratios(HSMR) by hospital beds were higher than that of the United States. A two-aspect approach to management of hospital mortality rates is suggested; national and hospital levels. The government is to release Hospital Standardized Mortality Ratio(HSMR) of large hospitals and to offer consulting on effective hospital mortality management to small and medium hospitals.

Development of Mortality Model of Severity-Adjustment Method of AMI Patients (급성심근경색증 환자 중증도 보정 사망 모형 개발)

  • Lim, Ji-Hye;Nam, Mun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2672-2679
    • /
    • 2012
  • The study was done to provide basic data of medical quality evaluation after developing the comorbidity disease mortality measurement modeled on the severity-adjustment method of AMI. This study analyzed 699,701 cases of Hospital Discharge Injury Data of 2005 and 2008, provided by the Korea Centers for Disease Control and Prevention. We used logistic regression to compare the risk-adjustment model of the Charlson Comorbidity Index with the predictability and compatibility of our severity score model that is newly developed for calibration. The models severity method included age, sex, hospitalization path, PCI presence, CABG, and 12 variables of the comorbidity disease. Predictability of the newly developed severity models, which has statistical C level of 0.796(95%CI=0.771-0.821) is higher than Charlson Comorbidity Index. This proves that there are differences of mortality, prevalence rate by method of mortality model calibration. In the future, this study outcome should be utilized more to achieve an improvement of medical quality evaluation, and also models will be developed that are considered for clinical significance and statistical compatibility.

Convergence Study in Development of Severity Adjustment Method for Death with Acute Myocardial Infarction Patients using Machine Learning (머신러닝을 이용한 급성심근경색증 환자의 퇴원 시 사망 중증도 보정 방법 개발에 대한 융복합 연구)

  • Baek, Seol-Kyung;Park, Hye-Jin;Kang, Sung-Hong;Choi, Joon-Young;Park, Jong-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.217-230
    • /
    • 2019
  • This study was conducted to develop a customized severity-adjustment method and to evaluate their validity for acute myocardial infarction(AMI) patients to complement the limitations of the existing severity-adjustment method for comorbidities. For this purpose, the subjects of KCD-7 code I20.0 ~ I20.9, which is the main diagnosis of acute myocardial infarction were extracted using the Korean National Hospital Discharge In-depth Injury survey data from 2006 to 2015. Three tools were used for severity-adjustment method of comorbidities : CCI (charlson comorbidity index), ECI (Elixhauser comorbidity index) and the newly proposed CCS (Clinical Classification Software). The results showed that CCS was the best tool for the severity correction, and that support vector machine model was the most predictable. Therefore, we propose the use of the customized method of severity correction and machine learning techniques from this study for the future research on severity adjustment such as assessment of results of medical service.

A Convergence Study in the Severity-adjusted Mortality Ratio on inpatients with multiple chronic conditions (복합만성질환 입원환자의 중증도 보정 사망비에 대한 융복합 연구)

  • Seo, Young-Suk;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.245-257
    • /
    • 2015
  • This study was to develop the predictive model for severity-adjusted mortality of inpatients with multiple chronic conditions and analyse the factors on the variation of hospital standardized mortality ratio(HSMR) to propose the plan to reduce the variation. We collect the data "Korean National Hospital Discharge In-depth Injury Survey" from 2008 to 2010 and select the final 110,700 objects of study who have chronic diseases for principal diagnosis and who are over the age of 30 with more than 2 chronic diseases including principal diagnosis. We designed a severity-adjusted mortality predictive model with using data-mining methods (logistic regression analysis, decision tree and neural network method). In this study, we used the predictive model for severity-adjusted mortality ratio by the decision tree using Elixhauser comorbidity index. As the result of the hospital standardized mortality ratio(HSMR) of inpatients with multiple chronic conditions, there were statistically significant differences in HSMR by the insurance type, bed number of hospital, and the location of hospital. We should find the method based on the result of this study to manage mortality ratio of inpatients with multiple chronic conditions efficiently as the national level. So we should make an effort to increase the quality of medical treatment for inpatients with multiple chronic diseases and to reduce growing medical expenses.

A study on the development of severity-adjusted mortality prediction model for discharged patient with acute stroke using machine learning (머신러닝을 이용한 급성 뇌졸중 퇴원 환자의 중증도 보정 사망 예측 모형 개발에 관한 연구)

  • Baek, Seol-Kyung;Park, Jong-Ho;Kang, Sung-Hong;Park, Hye-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.126-136
    • /
    • 2018
  • The purpose of this study was to develop a severity-adjustment model for predicting mortality in acute stroke patients using machine learning. Using the Korean National Hospital Discharge In-depth Injury Survey from 2006 to 2015, the study population with disease code I60-I63 (KCD 7) were extracted for further analysis. Three tools were used for the severity-adjustment of comorbidity: the Charlson Comorbidity Index (CCI), the Elixhauser comorbidity index (ECI), and the Clinical Classification Software (CCS). The severity-adjustment models for mortality prediction in patients with acute stroke were developed using logistic regression, decision tree, neural network, and support vector machine methods. The most common comorbid disease in stroke patients were hypertension, uncomplicated (43.8%) in the ECI, and essential hypertension (43.9%) in the CCS. Among the CCI, ECI, and CCS, CCS had the highest AUC value. CCS was confirmed as the best severity correction tool. In addition, the AUC values for variables of CCS including main diagnosis, gender, age, hospitalization route, and existence of surgery were 0.808 for the logistic regression analysis, 0.785 for the decision tree, 0.809 for the neural network and 0.830 for the support vector machine. Therefore, the best predictive power was achieved by the support vector machine technique. The results of this study can be used in the establishment of health policy in the future.

A study on the variation of severity adjusted LOS on Injry inpatient in Korea (손상입원환자의 중증도 보정 재원일수의 변이에 관한 연구)

  • Kim, Sung-Soo;Kim, Won-Joong;Kang, Sung-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2668-2676
    • /
    • 2011
  • In order to analyze the variation in length of stay(LOS) of injury inpatients, we developed severity-adjusted LOS model using Korean National Discharge In-depth Injury Survey data of Center for Disease Control. Appling this model, we calculated predicted values and, after standardizing LOS using the differences from the actual values, analyzed the variation in LOS. Major factors affecting severity-adjusted LOS of injury inpatients were found to be severity, surgery(or no surgery), age, injury mechanism and channel of hospitalization. Result of analysis of the differences between the actual values and predicted values adjusted by decision tree model suggested that there were statistically significant differences by hospital size(number of beds), type of insurance and location of institution. In order to reduce the variation in LOS, efforts should be exerted in developing nationwide treatment protocol, inducing medical institutions to utilize it, and furthermore systematically evaluating it to reduce the variation continually.

Severity-Adjusted LOS Model of AMI patients based on the Korean National Hospital Discharge in-depth Injury Survey Data (퇴원손상심층조사 자료를 기반으로 한 급성심근경색환자 재원일수의 중증도 보정 모형 개발)

  • Kim, Won-Joong;Kim, Sung-Soo;Kim, Eun-Ju;Kang, Sung-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4910-4918
    • /
    • 2013
  • This study aims to design a Severity-Adjusted LOS(Length of Stay) Model in order to efficiently manage LOS of AMI(Acute Myocardial Infarction) patients. We designed a Severity-Adjusted LOS Model with using data-mining methods(multiple regression analysis, decision trees, and neural network) which covered 6,074 AMI patients who showed the diagnosis of I21 from 2004-2009 Korean National Hospital Discharge in-depth Injury Survey. A decision tree model was chosen for the final model that produced superior results. This study discovered that the execution of CABG, status at discharge(alive or dead), comorbidity index, etc. were major factors affecting a Sevirity-Adjustment of LOS of AMI patients. The difference between real LOS and adjusted LOS resulted from hospital location and bed size. The efficient management of LOS of AMI patients requires that we need to perform various activities after identifying differentiating factors. These factors can be specified by applying each hospital's data into this newly designed Severity-Adjusted LOS Model.

Development of severity-adjusted length of stay in knee replacement surgery (무릎관절치환술 환자의 중증도 보정 재원일수 모형 개발)

  • Hong, Sung-Ok;Kim, Young-Teak;Choi, Youn-Hee;Park, Jong-Ho;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • This study was conducted to develop a severity-adjusted LOS(Length of Stay) model for knee replacement patients and identify factors that can influence the LOS by using the Korean National Hospital Discharge in-depth Injury Survey data. The comorbidity scoring systems and data-mining methods were used to design a severity-adjusted LOS model which covered 4,102 knee replacement patients. In this study, a decision tree model using CCS comorbidity scoring index was chosen for the final model that produced superior results. Factors such as presence of arthritis, patient sex and admission route etc. influenced patient length of stay. And there was a statistically significant difference between real LOS and adjusted LOS resulted from health-insurance type, bed size, and hospital location. Therefore the policy alternative on excessive medical utilization is needed to reduce variation in length of hospital stay in patients who undergo knee replacement.

Development of Severity-Adjustment Model for Length of Stay in Hospital for Percutaneous Coronary Interventions (관상동맥중재술 환자의 재원일수 중증도 보정 모형 개발)

  • Nam, Mun-Hee;Kang, Sung-Hong;Lim, Ji-Hye
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.372-383
    • /
    • 2011
  • Our study was carried out to develop the severity-adjustment model for length of stay in hospital for percutaneous coronary interventions so that we would analysis the factors on the variation in length of stay(LOS). The subjects were 1,011 percutaneous coronary interventions inpatients of the Korean National Hospital Discharge In-depth Injury Survey 2004-2006 data. The data were analyzed using t-test and ANOVA and the severity-adjustment model was developed using data mining technique. After yielding the standardized value of the difference between crude and expected length of stay, we analysed the variation of length of stay for percutaneous coronary interventions. There was variation of LOS in regional differences, size of sickbed and insurance type. The variation of length of stay controlling the case mix or severity of illness can be explained the factors of provider. This supply factors in LOS variations should be more studied for individual practice style or patient management practices and healthcare resources or environment. We expect that the severity-adjustment model using administrative databases should be more adapted in other diseases in practical.

Comparison of Hospital Standardized Mortality Ratio Using National Hospital Discharge Injury Data (퇴원손상심층조사 자료를 이용한 의료기관 중증도 보정 사망비 비교)

  • Park, Jong-Ho;Kim, Yoo-Mi;Kim, Sung-Soo;Kim, Won-Joong;Kang, Sung-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1739-1750
    • /
    • 2012
  • This study was to develop the assessment of medical service outcome using administration data through compared with hospital standardized mortality ratios(HSMR) in various hospitals. This study analyzed 63,664 cases of Hospital Discharge Injury Data of 2007 and 2008, provided by Korea Centers for Disease Control and Prevention. We used data mining technique and compared decision tree and logistic regression for developing risk-adjustment model of in-hospital mortality. Our Analysis shows that gender, length of stay, Elixhauser comorbidity index, hospitalization path, and primary diagnosis are main variables which influence mortality ratio. By comparing hospital standardized mortality ratios(HSMR) with standardized variables, we found concrete differences (55.6-201.6) of hospital standardized mortality ratios(HSMR) among hospitals. This proves that there are quality-gaps of medical service among hospitals. This study outcome should be utilized more to achieve the improvement of the quality of medical service.