The purpose of this study was to develop the risk-adjusted mortality model using Korean Hospital Discharge Injury data and US National Hospital Discharge Survey data and to suggest some ways to manage hospital mortality rates through comparison of Korea and United States Hospital Standardized Mortality Ratios(HSMR). This study used data mining techniques, decision tree and logistic regression, for developing Korea and United States risk-adjustment model of in-hospital mortality. By comparing Hospital Standardized Mortality Ratio(HSMR) with standardized variables, analysis shows the concrete differences between the two countries. While Korean Hospital Standardized Mortality Ratio(HSMR) is increasing every year(101.0 in 2006, 101.3 in 2007, 103.3 in 2008), HSMR appeared to be reduced in the United States(102.3 in 2006, 100.7 in 2007, 95.9 in 2008). Korean Hospital Standardized Mortality Ratios(HSMR) by hospital beds were higher than that of the United States. A two-aspect approach to management of hospital mortality rates is suggested; national and hospital levels. The government is to release Hospital Standardized Mortality Ratio(HSMR) of large hospitals and to offer consulting on effective hospital mortality management to small and medium hospitals.
Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.6
/
pp.2672-2679
/
2012
The study was done to provide basic data of medical quality evaluation after developing the comorbidity disease mortality measurement modeled on the severity-adjustment method of AMI. This study analyzed 699,701 cases of Hospital Discharge Injury Data of 2005 and 2008, provided by the Korea Centers for Disease Control and Prevention. We used logistic regression to compare the risk-adjustment model of the Charlson Comorbidity Index with the predictability and compatibility of our severity score model that is newly developed for calibration. The models severity method included age, sex, hospitalization path, PCI presence, CABG, and 12 variables of the comorbidity disease. Predictability of the newly developed severity models, which has statistical C level of 0.796(95%CI=0.771-0.821) is higher than Charlson Comorbidity Index. This proves that there are differences of mortality, prevalence rate by method of mortality model calibration. In the future, this study outcome should be utilized more to achieve an improvement of medical quality evaluation, and also models will be developed that are considered for clinical significance and statistical compatibility.
This study was conducted to develop a customized severity-adjustment method and to evaluate their validity for acute myocardial infarction(AMI) patients to complement the limitations of the existing severity-adjustment method for comorbidities. For this purpose, the subjects of KCD-7 code I20.0 ~ I20.9, which is the main diagnosis of acute myocardial infarction were extracted using the Korean National Hospital Discharge In-depth Injury survey data from 2006 to 2015. Three tools were used for severity-adjustment method of comorbidities : CCI (charlson comorbidity index), ECI (Elixhauser comorbidity index) and the newly proposed CCS (Clinical Classification Software). The results showed that CCS was the best tool for the severity correction, and that support vector machine model was the most predictable. Therefore, we propose the use of the customized method of severity correction and machine learning techniques from this study for the future research on severity adjustment such as assessment of results of medical service.
This study was to develop the predictive model for severity-adjusted mortality of inpatients with multiple chronic conditions and analyse the factors on the variation of hospital standardized mortality ratio(HSMR) to propose the plan to reduce the variation. We collect the data "Korean National Hospital Discharge In-depth Injury Survey" from 2008 to 2010 and select the final 110,700 objects of study who have chronic diseases for principal diagnosis and who are over the age of 30 with more than 2 chronic diseases including principal diagnosis. We designed a severity-adjusted mortality predictive model with using data-mining methods (logistic regression analysis, decision tree and neural network method). In this study, we used the predictive model for severity-adjusted mortality ratio by the decision tree using Elixhauser comorbidity index. As the result of the hospital standardized mortality ratio(HSMR) of inpatients with multiple chronic conditions, there were statistically significant differences in HSMR by the insurance type, bed number of hospital, and the location of hospital. We should find the method based on the result of this study to manage mortality ratio of inpatients with multiple chronic conditions efficiently as the national level. So we should make an effort to increase the quality of medical treatment for inpatients with multiple chronic diseases and to reduce growing medical expenses.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.11
/
pp.126-136
/
2018
The purpose of this study was to develop a severity-adjustment model for predicting mortality in acute stroke patients using machine learning. Using the Korean National Hospital Discharge In-depth Injury Survey from 2006 to 2015, the study population with disease code I60-I63 (KCD 7) were extracted for further analysis. Three tools were used for the severity-adjustment of comorbidity: the Charlson Comorbidity Index (CCI), the Elixhauser comorbidity index (ECI), and the Clinical Classification Software (CCS). The severity-adjustment models for mortality prediction in patients with acute stroke were developed using logistic regression, decision tree, neural network, and support vector machine methods. The most common comorbid disease in stroke patients were hypertension, uncomplicated (43.8%) in the ECI, and essential hypertension (43.9%) in the CCS. Among the CCI, ECI, and CCS, CCS had the highest AUC value. CCS was confirmed as the best severity correction tool. In addition, the AUC values for variables of CCS including main diagnosis, gender, age, hospitalization route, and existence of surgery were 0.808 for the logistic regression analysis, 0.785 for the decision tree, 0.809 for the neural network and 0.830 for the support vector machine. Therefore, the best predictive power was achieved by the support vector machine technique. The results of this study can be used in the establishment of health policy in the future.
Journal of the Korea Academia-Industrial cooperation Society
/
v.12
no.6
/
pp.2668-2676
/
2011
In order to analyze the variation in length of stay(LOS) of injury inpatients, we developed severity-adjusted LOS model using Korean National Discharge In-depth Injury Survey data of Center for Disease Control. Appling this model, we calculated predicted values and, after standardizing LOS using the differences from the actual values, analyzed the variation in LOS. Major factors affecting severity-adjusted LOS of injury inpatients were found to be severity, surgery(or no surgery), age, injury mechanism and channel of hospitalization. Result of analysis of the differences between the actual values and predicted values adjusted by decision tree model suggested that there were statistically significant differences by hospital size(number of beds), type of insurance and location of institution. In order to reduce the variation in LOS, efforts should be exerted in developing nationwide treatment protocol, inducing medical institutions to utilize it, and furthermore systematically evaluating it to reduce the variation continually.
Kim, Won-Joong;Kim, Sung-Soo;Kim, Eun-Ju;Kang, Sung-Hong
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.10
/
pp.4910-4918
/
2013
This study aims to design a Severity-Adjusted LOS(Length of Stay) Model in order to efficiently manage LOS of AMI(Acute Myocardial Infarction) patients. We designed a Severity-Adjusted LOS Model with using data-mining methods(multiple regression analysis, decision trees, and neural network) which covered 6,074 AMI patients who showed the diagnosis of I21 from 2004-2009 Korean National Hospital Discharge in-depth Injury Survey. A decision tree model was chosen for the final model that produced superior results. This study discovered that the execution of CABG, status at discharge(alive or dead), comorbidity index, etc. were major factors affecting a Sevirity-Adjustment of LOS of AMI patients. The difference between real LOS and adjusted LOS resulted from hospital location and bed size. The efficient management of LOS of AMI patients requires that we need to perform various activities after identifying differentiating factors. These factors can be specified by applying each hospital's data into this newly designed Severity-Adjusted LOS Model.
This study was conducted to develop a severity-adjusted LOS(Length of Stay) model for knee replacement patients and identify factors that can influence the LOS by using the Korean National Hospital Discharge in-depth Injury Survey data. The comorbidity scoring systems and data-mining methods were used to design a severity-adjusted LOS model which covered 4,102 knee replacement patients. In this study, a decision tree model using CCS comorbidity scoring index was chosen for the final model that produced superior results. Factors such as presence of arthritis, patient sex and admission route etc. influenced patient length of stay. And there was a statistically significant difference between real LOS and adjusted LOS resulted from health-insurance type, bed size, and hospital location. Therefore the policy alternative on excessive medical utilization is needed to reduce variation in length of hospital stay in patients who undergo knee replacement.
Our study was carried out to develop the severity-adjustment model for length of stay in hospital for percutaneous coronary interventions so that we would analysis the factors on the variation in length of stay(LOS). The subjects were 1,011 percutaneous coronary interventions inpatients of the Korean National Hospital Discharge In-depth Injury Survey 2004-2006 data. The data were analyzed using t-test and ANOVA and the severity-adjustment model was developed using data mining technique. After yielding the standardized value of the difference between crude and expected length of stay, we analysed the variation of length of stay for percutaneous coronary interventions. There was variation of LOS in regional differences, size of sickbed and insurance type. The variation of length of stay controlling the case mix or severity of illness can be explained the factors of provider. This supply factors in LOS variations should be more studied for individual practice style or patient management practices and healthcare resources or environment. We expect that the severity-adjustment model using administrative databases should be more adapted in other diseases in practical.
Park, Jong-Ho;Kim, Yoo-Mi;Kim, Sung-Soo;Kim, Won-Joong;Kang, Sung-Hong
Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.4
/
pp.1739-1750
/
2012
This study was to develop the assessment of medical service outcome using administration data through compared with hospital standardized mortality ratios(HSMR) in various hospitals. This study analyzed 63,664 cases of Hospital Discharge Injury Data of 2007 and 2008, provided by Korea Centers for Disease Control and Prevention. We used data mining technique and compared decision tree and logistic regression for developing risk-adjustment model of in-hospital mortality. Our Analysis shows that gender, length of stay, Elixhauser comorbidity index, hospitalization path, and primary diagnosis are main variables which influence mortality ratio. By comparing hospital standardized mortality ratios(HSMR) with standardized variables, we found concrete differences (55.6-201.6) of hospital standardized mortality ratios(HSMR) among hospitals. This proves that there are quality-gaps of medical service among hospitals. This study outcome should be utilized more to achieve the improvement of the quality of medical service.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.