본 연구에서는 한국 및 미국의 퇴원환자 자료를 이용하여 한국 및 미국의 중증도 보정 사망 모형을 개발하고 개발된 중증도 보정 사망모형에 따라 중증도 보정 사망률 지표를 산출 및 비교한 다음 이를 통해 국내 의료기관 사망률 관리 방안을 제시하고자 하였다. 한국 및 미국 의료기관의 중증도 보정 사망 모형은 데이터마이닝기법인 다중 로지스틱회귀분석 기법, 의사결정나무분석 기법을 이용하여 개발하였다. 개발된 의료기관의 중증도 보정 사망모형에 따라 한국 및 미국 의료기관의 중증도 보정 사망률을 산출한 결과 한국은 매년 증가하고 있는 반면 미국은 매년 감소하고 있는 것으로 나타나 한국과 미국간에 차이가 있었다. 의료기관의 병상규모별 중증도 보정 사망률의 변이 또한 한국이 미국보다 높았다. 국내 의료기관의 사망률 관리를 위해서는 의료기관 자체내에서 사망환자 관리가 가능한 대형 의료기관들의 경우 의료기관 중증도 보정 사망률 평가 결과 공개를 통해 지속적으로 사망률 관리를 유도하고, 의료기관 자체내에서 사망률 관리가 힘든 중소병원들은 국가 차원에서 파악한 국내 의료기관 사망환자 관리의 문제점 및 이를 개선할 수 있는 개선방안을 토대로 사망률 관리 컨설팅을 시행하는 등 의료기관 사망환자 관리 사업을 진행하여야 한다.
본 연구는 급성심근경색증 환자의 사망률 측정을 위한 중증도 보정 모형을 개발하여 의료의 질 평가에 필요한 기초자료를 제공하고자 수행되었다. 이를 위해서 질병관리본부의 2005-2008년 퇴원손상환자 699,701건의 자료를 분석하였다. Charlson Comorbidity Index 보정 방법을 이용한 경우와 새롭게 개발된 중증도 보정 모형의 예측력 및 적합도를 비교하기 위해 로지스틱 회귀분석을 실시하였다. 새롭게 개발된 모형에는 연령, 성, 입원경로, PCI 유무, CABG 유무, 동반질환 12가지 변수가 포함되었다. 분석결과 CCI를 이용한 중증도 보정 모형보다 새롭게 개발된 중증도 보정 사망 모형의 C 통계량 값이 0.796(95%CI=0.771-0.821)으로 더 높아 모형의 예측력이 더 우수한 것으로 나타났다. 본 연구를 통하여 중증도 보정 방법에 따라 사망률, 유병률, 예측력에도 차이가 있음을 확인하였다. 향후에 이모형은 의료의 질 평가에 이용하고, 질환별로 임상적 의미와 특성, 모형의 통계적 적합성 등을 고려한 중증도 보정모형이 계속해서 개발되어야 할 것이다.
본 연구는 기존 동반질환을 이용한 중증도 보정 방법의 제한점을 보완하기 위해 급성심근경색증 환자의 맞춤형 중증도 보정방법을 개발하고, 이의 타당성을 평가하기 위해 수행되었다. 이를 위하여 질병관리본부에서 2006년부터 2015년까지 10년간 수집한 퇴원손상심층조사 자료 중 주진단이 급성심근경색증인 한국표준질병사인분류(KCD-7) 코드 I20.0~I20.9의 대상자를 추출하였고, 동반질환 중증도 보정 도구로는 기존 활용되고 있는 CCI(Charlson comorbidity index), ECI(Elixhauser comorbidity index)와 새로이 제안하는 CCS(Clinical Classification Software)를 사용하였다. 이에 대한 중증도 보정 사망예측모형 개발을 위하여 머신러닝 기법인 로지스틱 회귀분석, 의사결정나무, 신경망, 서포트 벡터 머신기법을 활용하여 비교하였고 각각의 AUC(Area Under Curve)를 이용하여 개발된 모형을 평가하였다. 이를 평가한 결과 중증도 보정도구로는 CCS 가 가장 우수한 것으로 나타났으며, 머신러닝 기법 중에서는 서포트 벡터 머신을 이용한 모형의 예측력이 가장 우수한 것으로 확인되었다. 이에 향후 의료서비스 결과평가 등 중증도 보정을 위한 연구에서는 본 연구에서 제시한 맞춤형 중증도 보정방법과 머신러닝 기법을 활용하도록 하는 것을 제안한다.
본 연구는 복합만성질환 입원환자를 대상으로 중증도 보정 사망 예측모형을 개발하고, 중증도 보정 사망비의 변이 요인을 규명하여 변이를 줄일 수 있는 방안을 제시하고자 하였다. 이를 위해 퇴원손상심층조사 자료 2008년부터 2010년까지 자료를 수집하고 주진단이 만성질환이면서 주진단을 포함하여 2개 이상의 만성질환을 보유한 30세 이상의 복합만성질환 입원환자 110,700건을 최종 연구대상으로 선정하였다. 예측 모형 개발 시 데이터마이닝 기법(로지스틱회귀분석, 의사결정나무, 신경망 기법)을 적용하였다. 본 연구에서는 Elixhauser comorbidity index 동반상병 보정지수를 이용하여 의사결정나무분석으로 복합만성질환 입원환자의 중증도 보정 사망 예측모형을 개발하였다. 복합만성질환 입원환자의 의료기관 중증도 보정 사망비(HSMR)를 산출 한 결과 진료비 지불방법별, 병상규모별, 의료기관소재지별로 통계적으로 유의한 차이가 있는 것으로 나타났다. 상기 분석결과를 바탕으로 국가적 차원에서 복합만성질환 입원환자의 사망비를 효율적으로 관리하여 의료의 질 향상과 증가하는 의료비 부담 감소를 위해 지속적인 관심과 노력을 기울여야 할 것이다.
본 연구는 머신러닝을 활용하여 급성 뇌졸중 퇴원 환자의 중증도 보정 사망 예측 모형 개발을 목적으로 시행하였다. 전국 단위의 퇴원손상심층조사 2006~2015년 자료 중 한국표준질병사인분류(Korean standard classification of disease-KCD 7)에 따라 뇌졸중 코드 I60-I63에 해당하는 대상자를 추출하여 분석하였다. 동반질환 중증도 보정 도구로는 Charlson comorbidity index(CCI), Elixhauser comorbidity index(ECI), Clinical classification software(CCS)의 3가지 도구를 사용하였고 중증도 보정 모형 예측 개발은 로지스틱회귀분석, 의사결정나무, 신경망, 서포트 벡터 머신 기법을 활용하여 비교해 보았다. 뇌졸중 환자의 동반질환으로는 ECI에서는 합병증을 동반하지 않은 고혈압(hypertension, uncomplicated)이 43.8%로, CCS에서는 본태성고혈압(essential hypertension)이 43.9%로 다른 질환에 비해 가장 월등하게 높은 것으로 나타났다. 동반질환 중중도 보정 도구를 비교해 본 결과 CCI, ECI, CCS 중 CCS가 가장 높은 AUC값으로 분석되어 가장 우수한 중증도 보정 도구인 것으로 확인되었다. 또한 CCS, 주진단, 성, 연령, 입원경로, 수술유무 변수를 포함한 중증도 보정 모형 개발 AUC값은 로지스틱 회귀분석의 경우 0.808, 의사결정나무 0.785, 신경망 0.809, 서포트 벡터 머신 0.830로 분석되어 가장 우수한 예측력을 보인 것은 서포트 벡터머신 기법인 것으로 최종 확인되었고 이러한 결과는 추후 보건의료정책 수립에 활용될 수 있을 것이다.
손상입원환자의 재원일수 변이요인을 분석하기 위해 질병관리본부의 퇴원손상환자 자료를 이용하여 재원일수 중증도 보정모형을 개발하였다. 이 모형을 적용, 보정값을 산출하고 실측값과의 차이를 이용하여 재원일수를 표준화한 후 재원일수의 변이를 분석하였다. 입원손상환자의 중증도 보정 재원일수에 영향을 미치는 주요 요인은 중증도, 수술유무, 연령, 손상기전, 입원경로 등으로 나타났다. 의사결정나무 모형에 의하여 재원일수의 보정값을 산출하여 실측값과의 차이를 분석한 결과 병원규모(병상수)별, 보험유형별, 기관 소재지별로 통계적으로 유의한 차이가 있는 것으로 나타났다. 따라서 재원일수의 변이를 줄이기 위해 국가차원에서 진료행위프로토콜을 개발하여 의료기관에서 이를 활용하도록 유도하고, 더 나아가 이를 체계적으로 평가하여 지속적으로 노력하여야 할 것이다.
본 연구는 급성심근경색환자의 효율적인 재원일수 관리를 위해 재원일수에 대한 중증도 보정 모형을 개발하고자 하였다. 2004-2009년 퇴원손상심층조사 자료에서 주진단이 I21인 급성심근경색환자 6,074명을 추출하였으며, 모형 개발 시 데이터마이닝 기법(다중회귀분석, 의사결정나무, 신경망 기법)을 적용하였다. 개발된 모형들 중에서 의사결정나무 모형이 가장 우수한 모형으로 판정되어 이를 본 연구의 중증도 보정 모형으로 채택하였다. 급성심근경색 환자의 재원일수의 중증도 보정에 영향을 미치는 주요한 요인은 관상동맥우회술 시행유무, 퇴원 시 사망유무, 동반지수 등 이였으며, 병상규모와 의료기관 소재지 별로 중증도 보정 재원일수와 실제 재원일수에 차이가 있었다. 급성심근경색환자의 재원일수 변이를 줄이고 효율적으로 관리하기 위해서는 개발된 모형에 각 의료기관의 자료를 적용하여 중증도를 보정한 후, 차이가 나는 요인을 규명하여 이를 해결하는 활동이 수행되어야 할 것이다.
본 연구는 무릎관절치환술의 효율적 재원일수 관리를 위해 퇴원손상심층조사 자료를 이용하여 무릎관절치환술에 대한 중증도 보정 재원일수 모형을 개발하고, 이를 기반으로 무릎관절치환술의 재원일수 변이요인을 파악하고자 하였다. 수집된 퇴원손상심층조사 자료 중 무릎관절치환술 환자 4,102명을 대상으로 동반상병 보정 방법 및 데이터마이닝 기법을 이용하여 무릎관절치환술 환자에 대한 중증도 보정 재원일수 모형을 개발한 결과 CCS 동반상병 보정 방법을 이용한 의사결정나무 모형이 가장 우수하였으며, 무릎관절치환술 환자의 재원일수에 영향을 미치는 요인은 관절염 동반유무, 성, 입원경로 등으로 나타났다. 개발된 중증도 보정 모형을 기반으로 무릎관절치환술 환자의 적정 재원일수와 실제 재원일수의 차이를 파악한 결과 진료비지불방법, 병상규모, 의료기관 소재지 모두 통계적으로 유의한 차이가 있었다. 따라서 무릎관절치환술 환자의 재원일수 변이를 줄이고 효율적으로 관리하기 위해서는 과잉 진료에 대한 모니터링 등에 정책적 방안 마련이 필요하다.
본 연구의 목적은 관상동맥중재술 입원 환자의 재원일수의 변이를 규명하기 위해 중증도 보정 모형을 개발하였다. 2004~2006년 퇴원손상환자 조사자료 중 관상동맥중재술 입원 환자 1,011건을 연구대상으로 하였으며, 재원일수의 변이분석은 t검정, 분산분석을 실시하였고, 중증도 보정 재원일수 모형은 데이터마이닝 기법을 이용하였다. 개발된 다중회귀분석 모형을 이용하여 예측 재원일수를 산출하고 이를 실제 재원일수와 비교한 결과 병상규모별, 보험유형과 지역별로 재원일수의 변이가 존재하는 것으로 나타났다. 환자 특성과 중증도를 통제하고 나타난 재원일수의 변이는 공급자 요인으로 설명될 수 있는데, 진료행태나 의료자원에 대한 후속 연구가 필요한 것으로 보인다. 본 연구는 행정 데이터를 이용하여 중증도 모형을 개발하고 변이를 확인하였다는 점에서 활용의 효용성을 높이는 데 기여할 것으로 사료된다.
본 연구는 의료서비스의 결과지표인 의료기관 중증도 보정 사망비(HSMR)를 산출하고, 비교하여 행정자료를 이용한 의료서비스 결과를 평가할 수 있는 방안을 마련하고자 수행되었다. 이를 위해서 질병관리본부의 2007-2008년의 퇴원손상환자 63,664건의 자료를 분석하였다. 중증도 보정모형 개발을 위해 데이터마이닝을 이용한 의사결정나무와 로지스틱 회귀분석을 실시하였으며, 최종 모형으로 선정된 로지스틱 회귀분석에는 성별, 재원일수, Elixhauser 상병지수, 입원경로, 주상병 변수가 포함되었다. 퇴원시 사망에 영향을 끼치는 이러한 변수를 보정 후 병원간의 중증도 보정 사망비(HSMR)를 비교한 결과 병원간의 중증도 보정 사망비(HSMR)는 차이가 있는 것으로 나타남에 따라 병원의 의료서비스 수준 차이가 있는 것이 확인되었다(HSMR 범위: 55.6-201.6). 본 연구를 통하여 병원간의 퇴원시 사망률을 비교할 수 있는 방법이 개발되었으므로 향후에 이를 이용하여 다양한 의료의 질 향상 활동을 할 수 있는 방안을 마련하여야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.