• 제목/요약/키워드: 중증도 보정

검색결과 36건 처리시간 0.02초

한국과 미국 의료기관의 중증도 보정 사망률 비교 (The Comparison of Risk-adjusted Mortality Rate between Korea and United States)

  • 정태경;강성홍
    • 디지털융복합연구
    • /
    • 제11권5호
    • /
    • pp.371-384
    • /
    • 2013
  • 본 연구에서는 한국 및 미국의 퇴원환자 자료를 이용하여 한국 및 미국의 중증도 보정 사망 모형을 개발하고 개발된 중증도 보정 사망모형에 따라 중증도 보정 사망률 지표를 산출 및 비교한 다음 이를 통해 국내 의료기관 사망률 관리 방안을 제시하고자 하였다. 한국 및 미국 의료기관의 중증도 보정 사망 모형은 데이터마이닝기법인 다중 로지스틱회귀분석 기법, 의사결정나무분석 기법을 이용하여 개발하였다. 개발된 의료기관의 중증도 보정 사망모형에 따라 한국 및 미국 의료기관의 중증도 보정 사망률을 산출한 결과 한국은 매년 증가하고 있는 반면 미국은 매년 감소하고 있는 것으로 나타나 한국과 미국간에 차이가 있었다. 의료기관의 병상규모별 중증도 보정 사망률의 변이 또한 한국이 미국보다 높았다. 국내 의료기관의 사망률 관리를 위해서는 의료기관 자체내에서 사망환자 관리가 가능한 대형 의료기관들의 경우 의료기관 중증도 보정 사망률 평가 결과 공개를 통해 지속적으로 사망률 관리를 유도하고, 의료기관 자체내에서 사망률 관리가 힘든 중소병원들은 국가 차원에서 파악한 국내 의료기관 사망환자 관리의 문제점 및 이를 개선할 수 있는 개선방안을 토대로 사망률 관리 컨설팅을 시행하는 등 의료기관 사망환자 관리 사업을 진행하여야 한다.

급성심근경색증 환자 중증도 보정 사망 모형 개발 (Development of Mortality Model of Severity-Adjustment Method of AMI Patients)

  • 임지혜;남문희
    • 한국산학기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.2672-2679
    • /
    • 2012
  • 본 연구는 급성심근경색증 환자의 사망률 측정을 위한 중증도 보정 모형을 개발하여 의료의 질 평가에 필요한 기초자료를 제공하고자 수행되었다. 이를 위해서 질병관리본부의 2005-2008년 퇴원손상환자 699,701건의 자료를 분석하였다. Charlson Comorbidity Index 보정 방법을 이용한 경우와 새롭게 개발된 중증도 보정 모형의 예측력 및 적합도를 비교하기 위해 로지스틱 회귀분석을 실시하였다. 새롭게 개발된 모형에는 연령, 성, 입원경로, PCI 유무, CABG 유무, 동반질환 12가지 변수가 포함되었다. 분석결과 CCI를 이용한 중증도 보정 모형보다 새롭게 개발된 중증도 보정 사망 모형의 C 통계량 값이 0.796(95%CI=0.771-0.821)으로 더 높아 모형의 예측력이 더 우수한 것으로 나타났다. 본 연구를 통하여 중증도 보정 방법에 따라 사망률, 유병률, 예측력에도 차이가 있음을 확인하였다. 향후에 이모형은 의료의 질 평가에 이용하고, 질환별로 임상적 의미와 특성, 모형의 통계적 적합성 등을 고려한 중증도 보정모형이 계속해서 개발되어야 할 것이다.

머신러닝을 이용한 급성심근경색증 환자의 퇴원 시 사망 중증도 보정 방법 개발에 대한 융복합 연구 (Convergence Study in Development of Severity Adjustment Method for Death with Acute Myocardial Infarction Patients using Machine Learning)

  • 백설경;박혜진;강성홍;최준영;박종호
    • 디지털융복합연구
    • /
    • 제17권2호
    • /
    • pp.217-230
    • /
    • 2019
  • 본 연구는 기존 동반질환을 이용한 중증도 보정 방법의 제한점을 보완하기 위해 급성심근경색증 환자의 맞춤형 중증도 보정방법을 개발하고, 이의 타당성을 평가하기 위해 수행되었다. 이를 위하여 질병관리본부에서 2006년부터 2015년까지 10년간 수집한 퇴원손상심층조사 자료 중 주진단이 급성심근경색증인 한국표준질병사인분류(KCD-7) 코드 I20.0~I20.9의 대상자를 추출하였고, 동반질환 중증도 보정 도구로는 기존 활용되고 있는 CCI(Charlson comorbidity index), ECI(Elixhauser comorbidity index)와 새로이 제안하는 CCS(Clinical Classification Software)를 사용하였다. 이에 대한 중증도 보정 사망예측모형 개발을 위하여 머신러닝 기법인 로지스틱 회귀분석, 의사결정나무, 신경망, 서포트 벡터 머신기법을 활용하여 비교하였고 각각의 AUC(Area Under Curve)를 이용하여 개발된 모형을 평가하였다. 이를 평가한 결과 중증도 보정도구로는 CCS 가 가장 우수한 것으로 나타났으며, 머신러닝 기법 중에서는 서포트 벡터 머신을 이용한 모형의 예측력이 가장 우수한 것으로 확인되었다. 이에 향후 의료서비스 결과평가 등 중증도 보정을 위한 연구에서는 본 연구에서 제시한 맞춤형 중증도 보정방법과 머신러닝 기법을 활용하도록 하는 것을 제안한다.

복합만성질환 입원환자의 중증도 보정 사망비에 대한 융복합 연구 (A Convergence Study in the Severity-adjusted Mortality Ratio on inpatients with multiple chronic conditions)

  • 서영숙;강성홍
    • 디지털융복합연구
    • /
    • 제13권12호
    • /
    • pp.245-257
    • /
    • 2015
  • 본 연구는 복합만성질환 입원환자를 대상으로 중증도 보정 사망 예측모형을 개발하고, 중증도 보정 사망비의 변이 요인을 규명하여 변이를 줄일 수 있는 방안을 제시하고자 하였다. 이를 위해 퇴원손상심층조사 자료 2008년부터 2010년까지 자료를 수집하고 주진단이 만성질환이면서 주진단을 포함하여 2개 이상의 만성질환을 보유한 30세 이상의 복합만성질환 입원환자 110,700건을 최종 연구대상으로 선정하였다. 예측 모형 개발 시 데이터마이닝 기법(로지스틱회귀분석, 의사결정나무, 신경망 기법)을 적용하였다. 본 연구에서는 Elixhauser comorbidity index 동반상병 보정지수를 이용하여 의사결정나무분석으로 복합만성질환 입원환자의 중증도 보정 사망 예측모형을 개발하였다. 복합만성질환 입원환자의 의료기관 중증도 보정 사망비(HSMR)를 산출 한 결과 진료비 지불방법별, 병상규모별, 의료기관소재지별로 통계적으로 유의한 차이가 있는 것으로 나타났다. 상기 분석결과를 바탕으로 국가적 차원에서 복합만성질환 입원환자의 사망비를 효율적으로 관리하여 의료의 질 향상과 증가하는 의료비 부담 감소를 위해 지속적인 관심과 노력을 기울여야 할 것이다.

머신러닝을 이용한 급성 뇌졸중 퇴원 환자의 중증도 보정 사망 예측 모형 개발에 관한 연구 (A study on the development of severity-adjusted mortality prediction model for discharged patient with acute stroke using machine learning)

  • 백설경;박종호;강성홍;박혜진
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.126-136
    • /
    • 2018
  • 본 연구는 머신러닝을 활용하여 급성 뇌졸중 퇴원 환자의 중증도 보정 사망 예측 모형 개발을 목적으로 시행하였다. 전국 단위의 퇴원손상심층조사 2006~2015년 자료 중 한국표준질병사인분류(Korean standard classification of disease-KCD 7)에 따라 뇌졸중 코드 I60-I63에 해당하는 대상자를 추출하여 분석하였다. 동반질환 중증도 보정 도구로는 Charlson comorbidity index(CCI), Elixhauser comorbidity index(ECI), Clinical classification software(CCS)의 3가지 도구를 사용하였고 중증도 보정 모형 예측 개발은 로지스틱회귀분석, 의사결정나무, 신경망, 서포트 벡터 머신 기법을 활용하여 비교해 보았다. 뇌졸중 환자의 동반질환으로는 ECI에서는 합병증을 동반하지 않은 고혈압(hypertension, uncomplicated)이 43.8%로, CCS에서는 본태성고혈압(essential hypertension)이 43.9%로 다른 질환에 비해 가장 월등하게 높은 것으로 나타났다. 동반질환 중중도 보정 도구를 비교해 본 결과 CCI, ECI, CCS 중 CCS가 가장 높은 AUC값으로 분석되어 가장 우수한 중증도 보정 도구인 것으로 확인되었다. 또한 CCS, 주진단, 성, 연령, 입원경로, 수술유무 변수를 포함한 중증도 보정 모형 개발 AUC값은 로지스틱 회귀분석의 경우 0.808, 의사결정나무 0.785, 신경망 0.809, 서포트 벡터 머신 0.830로 분석되어 가장 우수한 예측력을 보인 것은 서포트 벡터머신 기법인 것으로 최종 확인되었고 이러한 결과는 추후 보건의료정책 수립에 활용될 수 있을 것이다.

손상입원환자의 중증도 보정 재원일수의 변이에 관한 연구 (A study on the variation of severity adjusted LOS on Injry inpatient in Korea)

  • 김성수;김원중;강성홍
    • 한국산학기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.2668-2676
    • /
    • 2011
  • 손상입원환자의 재원일수 변이요인을 분석하기 위해 질병관리본부의 퇴원손상환자 자료를 이용하여 재원일수 중증도 보정모형을 개발하였다. 이 모형을 적용, 보정값을 산출하고 실측값과의 차이를 이용하여 재원일수를 표준화한 후 재원일수의 변이를 분석하였다. 입원손상환자의 중증도 보정 재원일수에 영향을 미치는 주요 요인은 중증도, 수술유무, 연령, 손상기전, 입원경로 등으로 나타났다. 의사결정나무 모형에 의하여 재원일수의 보정값을 산출하여 실측값과의 차이를 분석한 결과 병원규모(병상수)별, 보험유형별, 기관 소재지별로 통계적으로 유의한 차이가 있는 것으로 나타났다. 따라서 재원일수의 변이를 줄이기 위해 국가차원에서 진료행위프로토콜을 개발하여 의료기관에서 이를 활용하도록 유도하고, 더 나아가 이를 체계적으로 평가하여 지속적으로 노력하여야 할 것이다.

퇴원손상심층조사 자료를 기반으로 한 급성심근경색환자 재원일수의 중증도 보정 모형 개발 (Severity-Adjusted LOS Model of AMI patients based on the Korean National Hospital Discharge in-depth Injury Survey Data)

  • 김원중;김성수;김은주;강성홍
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.4910-4918
    • /
    • 2013
  • 본 연구는 급성심근경색환자의 효율적인 재원일수 관리를 위해 재원일수에 대한 중증도 보정 모형을 개발하고자 하였다. 2004-2009년 퇴원손상심층조사 자료에서 주진단이 I21인 급성심근경색환자 6,074명을 추출하였으며, 모형 개발 시 데이터마이닝 기법(다중회귀분석, 의사결정나무, 신경망 기법)을 적용하였다. 개발된 모형들 중에서 의사결정나무 모형이 가장 우수한 모형으로 판정되어 이를 본 연구의 중증도 보정 모형으로 채택하였다. 급성심근경색 환자의 재원일수의 중증도 보정에 영향을 미치는 주요한 요인은 관상동맥우회술 시행유무, 퇴원 시 사망유무, 동반지수 등 이였으며, 병상규모와 의료기관 소재지 별로 중증도 보정 재원일수와 실제 재원일수에 차이가 있었다. 급성심근경색환자의 재원일수 변이를 줄이고 효율적으로 관리하기 위해서는 개발된 모형에 각 의료기관의 자료를 적용하여 중증도를 보정한 후, 차이가 나는 요인을 규명하여 이를 해결하는 활동이 수행되어야 할 것이다.

무릎관절치환술 환자의 중증도 보정 재원일수 모형 개발 (Development of severity-adjusted length of stay in knee replacement surgery)

  • 홍성옥;김영택;최연희;박종호;강성홍
    • 디지털융복합연구
    • /
    • 제13권2호
    • /
    • pp.215-225
    • /
    • 2015
  • 본 연구는 무릎관절치환술의 효율적 재원일수 관리를 위해 퇴원손상심층조사 자료를 이용하여 무릎관절치환술에 대한 중증도 보정 재원일수 모형을 개발하고, 이를 기반으로 무릎관절치환술의 재원일수 변이요인을 파악하고자 하였다. 수집된 퇴원손상심층조사 자료 중 무릎관절치환술 환자 4,102명을 대상으로 동반상병 보정 방법 및 데이터마이닝 기법을 이용하여 무릎관절치환술 환자에 대한 중증도 보정 재원일수 모형을 개발한 결과 CCS 동반상병 보정 방법을 이용한 의사결정나무 모형이 가장 우수하였으며, 무릎관절치환술 환자의 재원일수에 영향을 미치는 요인은 관절염 동반유무, 성, 입원경로 등으로 나타났다. 개발된 중증도 보정 모형을 기반으로 무릎관절치환술 환자의 적정 재원일수와 실제 재원일수의 차이를 파악한 결과 진료비지불방법, 병상규모, 의료기관 소재지 모두 통계적으로 유의한 차이가 있었다. 따라서 무릎관절치환술 환자의 재원일수 변이를 줄이고 효율적으로 관리하기 위해서는 과잉 진료에 대한 모니터링 등에 정책적 방안 마련이 필요하다.

관상동맥중재술 환자의 재원일수 중증도 보정 모형 개발 (Development of Severity-Adjustment Model for Length of Stay in Hospital for Percutaneous Coronary Interventions)

  • 남문희;강성홍;임지혜
    • 한국콘텐츠학회논문지
    • /
    • 제11권9호
    • /
    • pp.372-383
    • /
    • 2011
  • 본 연구의 목적은 관상동맥중재술 입원 환자의 재원일수의 변이를 규명하기 위해 중증도 보정 모형을 개발하였다. 2004~2006년 퇴원손상환자 조사자료 중 관상동맥중재술 입원 환자 1,011건을 연구대상으로 하였으며, 재원일수의 변이분석은 t검정, 분산분석을 실시하였고, 중증도 보정 재원일수 모형은 데이터마이닝 기법을 이용하였다. 개발된 다중회귀분석 모형을 이용하여 예측 재원일수를 산출하고 이를 실제 재원일수와 비교한 결과 병상규모별, 보험유형과 지역별로 재원일수의 변이가 존재하는 것으로 나타났다. 환자 특성과 중증도를 통제하고 나타난 재원일수의 변이는 공급자 요인으로 설명될 수 있는데, 진료행태나 의료자원에 대한 후속 연구가 필요한 것으로 보인다. 본 연구는 행정 데이터를 이용하여 중증도 모형을 개발하고 변이를 확인하였다는 점에서 활용의 효용성을 높이는 데 기여할 것으로 사료된다.

퇴원손상심층조사 자료를 이용한 의료기관 중증도 보정 사망비 비교 (Comparison of Hospital Standardized Mortality Ratio Using National Hospital Discharge Injury Data)

  • 박종호;김유미;김성수;김원중;강성홍
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1739-1750
    • /
    • 2012
  • 본 연구는 의료서비스의 결과지표인 의료기관 중증도 보정 사망비(HSMR)를 산출하고, 비교하여 행정자료를 이용한 의료서비스 결과를 평가할 수 있는 방안을 마련하고자 수행되었다. 이를 위해서 질병관리본부의 2007-2008년의 퇴원손상환자 63,664건의 자료를 분석하였다. 중증도 보정모형 개발을 위해 데이터마이닝을 이용한 의사결정나무와 로지스틱 회귀분석을 실시하였으며, 최종 모형으로 선정된 로지스틱 회귀분석에는 성별, 재원일수, Elixhauser 상병지수, 입원경로, 주상병 변수가 포함되었다. 퇴원시 사망에 영향을 끼치는 이러한 변수를 보정 후 병원간의 중증도 보정 사망비(HSMR)를 비교한 결과 병원간의 중증도 보정 사망비(HSMR)는 차이가 있는 것으로 나타남에 따라 병원의 의료서비스 수준 차이가 있는 것이 확인되었다(HSMR 범위: 55.6-201.6). 본 연구를 통하여 병원간의 퇴원시 사망률을 비교할 수 있는 방법이 개발되었으므로 향후에 이를 이용하여 다양한 의료의 질 향상 활동을 할 수 있는 방안을 마련하여야 할 것이다.