• Title/Summary/Keyword: 중저온형 고체산화물 연료전지

Search Result 16, Processing Time 0.041 seconds

고체산화물 연료전지 셀 소재 및 제조 기술 동향

  • Choe, Jun-Hwan;Choe, Jong-Jin;Park, Dong-Su
    • 기계와재료
    • /
    • v.21 no.2
    • /
    • pp.6-23
    • /
    • 2009
  • 고체산화물 연료전지(SOFC)는 복합 발전시 70% 가까운 발전효율을 기대할 수 있고 환경 특성이 우수하며 귀금속 촉매를 사용하지 않으므로 저비용화가 가능해 최근 활발한 기술/개발 양상을 보이고 있다. SOFC의 상용화와 범용화를 가속화하기 위해서는 핵심 소재인 셀 구성요소(전해질, 전극, 연결재 등)의 특성 향상이 요구되며 특히 향후 중 저온에서 작동 가능한 SOFC 기술 개발을 위해 저온 작동형 셀 소재에 대한 연구도 활발히 진행되고 있다. 따라서 본 고에서는 SOFC용 셀 소재의 중요성을 고려하여 고체산화물 연료전지의 셀 구성 소재 및 제조기술을 중심으로 기술하였고 주요 관련 기술들도 소개하였다.

  • PDF

Preparation of $Ce_{0.8}Sm_{0.2}O_{x}$ Electrolyte Thin Film for Solid Oxide Fuel Cells by Electrophoretic Deposition (전기영동법을 이용한 고체산화물 연료전지용 $Ce_{0.8}Sm_{0.2}O_{x}$ 전해질 박막 제조)

  • Kim, Dong-Gyu;Song, Min-Wu;Lee, Kyeong-Seop;Kim, Yoen-Su;Kim, Young-Soon;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.781-785
    • /
    • 2011
  • In this work, a nano-sized samaria-doped ceria(SDC) was prepared by a urea-based hydrothermal method and characterized by XRD, FESEM and TEM. It was observed that the increase in synthesis time and temperature gave rise to crystallity and particles size. Moreover, the synthesised powders had a excellent ion-conductivity(0.1 S/cm at 600~$800^{\circ}C$) which is suitable for electrolyte of intermediate temperature-solid oxide fuel cell(IT-SOFC). Subsequently for use as electrolyte for anode-supported IT-SOFC, we tried to deposit the SDC powder on a porous NiO-SDC substrate by electrophoretic deposition(EPD) method. From the FESEM observation, a compact

Performance Behavior by H2 and CO as a Fuel in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) (중.저온형 고체산화물 연료전지에서 연료로 공급되는 CO 와 H2 가 성능에 미치는 영향)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.963-969
    • /
    • 2008
  • The performance behavior of solid oxide fuel cell using $H_2$ and CO as fuels was investigated. The power densities and impedance results showed a little variation as the ratio of $H_2$ and CO changed. However, when the pure CO was used as a fuel, area specific resistance (ASR), especially low frequency region, was increased. This might be due to carbon deposition on anode. The maximum power density was 60% lower using CO than using $H_2$. Carbon deposition reduced after constant current was applied. The SOFC performance was recovered from the carbon deposition after applying constant current during 100h.

Studies of Co-Fe based perovskite cathodes with fixed A-site cations (중 저온형 고체 산화물 연료전지를 Co-Mn 계열의 페로브스카이트 구조의 공기극에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.364-367
    • /
    • 2006
  • The decrease of polarization resistance in cathode is the key point for intermediate temperature SOFC(Solid Oxide Fuel Cell). In this study, the Influence of Co substitution in B-site at perovskite PSCM (Pr0.3Sr0.7CoxMn(1-x)) was investigated. The PSCM series exhibits excellent MIEC(Mixed ionic Electronic Conductor) properties. The ASR(Area Specific Resistance) of PSCM3773 was $0.174{\Omega}cm^2\;at\;700^{\circ}C$. The activation energy of PSCM3773 was also lower than other compositions of PSCM. The ASR values were increased gradually during the thermal cycling test of PSCM37773 due to the delamination between electrolyte and cathode materials.

  • PDF

Characterization of PSCF3737 for intermediate temperature solid oxide fuel cell (IT-SOFC) (중.저온형 고체 산화물 연료전지의 공기극으로 사용되는 PSCF3737 물질의 특성에 관한 연구)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.61-64
    • /
    • 2008
  • $Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_{3-\delta}$ (PSCF3737) was prepared and characterized as a cathode material for intermediate temperature-operating solid oxide fuel cell (IT-SOFC). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), and electrical property measurement were carried out to study cathode performance of the material. XPS and EXAFS results proved that oxygen vacancy concentration was decreased and lattice constants of the perovskite structure material were increased by doping Fe up to 70 mol% at B-site of the crystal structure, which also extended the distance between oxygen and neighbor atoms. Thermal expansion coefficient (TEC) of PSCF3737 is smaller than that of $Pr_{0.3}Sr_{0.7}CoO_{3-\delta}$(PSC37) due to lower oxygen vacancy concentration. PSCF3737 showed better cathode performance than PSC37. It might be due good adhesion by a smaller difference of TEC between $Gd_{0.1}Ce_{0.9}O_2$ (CGO91) and electrode. Composite material PSCF3737-CGO91 showed better compatibility of TEC than PSCF3737. However, PSCF3737-CGO91 did not represent higher electrochemical property than PSCF3737 due to decreased reaction sites by CGO91.

  • PDF

Study of $Pr_{0.3}Sr_{0.7}CO_{x}Fe_{(1-x)}O_{3-\delta}$ (x=0, 0.3, 0.5, 0.7, 1) as the cathode materials for intermediate temperature SOFC (${\cdot}$저온형 고체 산화물 연료전지의 공기극 물질로 사용되는 $Pr_{0.3}Sr_{0.7}CO_{x}Fe_{(1-x)}O_{3-\delta}$ (x=0, 0.3, 0.5, 0.7, 1) 에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.125-128
    • /
    • 2007
  • The influence of Co substitution in B-site at perovskite PSCF($Pr_{0.3}Sr_{0.7}CO_{x}Fe_{(1-x)}O_{3}$) was investigated in this study. The PSCF series exhibits excellent MIEC(mixed ionic electronic conductor) properties. ASR(area specific resistance) of PSCF3737 was 0.137 ${\Omega}{\cdot}cm^{2}$ at $700^{\circ}C$. The activation energy of PSCF3737 was also lower than other compositions of PSCF. ASR of PSCF3737 was analysed as two parts at different part of frequency region. Responses at middle frequency part (${\sim}10^2$ Hz) were concerned with oxygen reduction reaction and those at low frequency part (${\sim}10^{-1}$ Hz) were related with oxygen diffusion.

  • PDF

Electrochemical Investigation in Particle Size and Thermal Cycles of Sr Doped Layered Perovskite Based Composite Cathodes for Intermediate Temperature-operating Solid Oxide Fuel Cell (중·저온형 고체산화물 연료전지 공기극의 적용을 위한 Sr이 치환된 이중층 페로브스카이트 기반 복합공기극 물질의 분말 크기 및 열 사이클에 따른 전기화학특성 분석)

  • Kim, Jung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.176-183
    • /
    • 2011
  • The electrochemical characteristics from various particle sizes of $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$ (CGO91) in composite cathode comprised of the samarium-strontium doped layered perovskite ($SmBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$) and CGO91 have been investigated for possible application as a cathode material for an intermediate temperature-operating solid oxide fuel cell (IT-SOFC). The area specific resistances (ASRs) of composite cathodes with CGO91 having smaller particle size ($0.4\sim42{\mu}m$) and SBSCO of 1 : 1 ratio (50wt% SBSCO and 50 wt% CGO91, SBSCO: 50) give the lowest ASR of $0.10{\mu}cm^2$ at $600^{\circ}C$ and $0.013{\Omega}cm^2$ at $700^{\circ}C$. However, composite cathodes with having relatively bigger CGO91 particle size show the two times higher ASR results than those of SBSCO : 50. From the 10 times thermal cycles in SBSCO : 50, the ASRs of SBSCO : 50 increased from $0.0193{\Omega}cm^2$ to $0.094{\Omega}cm^2$ at $700^{\circ}C$, however, the ASR value was maintained after 7 times of thermal cycling.