• Title/Summary/Keyword: 중원생대

Search Result 12, Processing Time 0.019 seconds

LA-MC-ICPMS U-Pb Ages of the Detrital Zircons from the Baengnyeong Group: Implications of the Dominance of the Mesoproterozoic Zircons (신원생대 백령층군 사암의 쇄설성 저어콘 LA-MC-ICPMS U-Pb 연령: 중원생대 집중연령의 의미)

  • Kim, Myoung Jung;Park, Jeong-Woong;Lee, Tae-Ho;Song, Yong-Sun;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.433-444
    • /
    • 2016
  • The U-Pb ages of detrital zircons from the Baengnyeong Group were determined by LA-MC-ICPMS, yielding condensed age population in the range from 1100 Ma to 1800 Ma corresponding to the Mesoproterozoic to late Paleoproterozoic. However, detrital zircons of ca.1800-2000 Ma or ca. 2500 Ma ages, which appear frequently in the lower Paleozoic Joseon Supergroup and the upper Paleozoic Pyeongan Supergroup are lacking in the Baengnyeong Group. Such characteristics are identical to those of the Neoproterozoic Sangwon System of North Korea, suggesting that the Baengnyeong Group might be the southwestern extension of the Sangwon System. The zircon age distribution patterns from the Impi Formation in the Gunsan area closely resemble those of the Baengnyeong Group, implying possible correlation of the Impi Formation to the Sangwon System. Therefore, the Mesoproterozoic detrital zircons reported from the Hwangangni Formation of the Okcheon Metamorphic Belt and the Myobong, Sambangsan and Sesong Formations of the Taebaeksan Basin might be derived from the provenances within the Korean peninsula.

국내외 지구과학 교과서의 지질 연대와 국제 지질 연대 자료의 검토

  • Kim, Gyeong-Su;Kim, Jeong-Ryul
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.207-212
    • /
    • 2005
  • 제7차 교육과정에 따라서 집필된 지구과학 I, II 교과서와 국내외 각종 지구과학 교재의 지질 연대 자료를 검토하였다. 지구과학 I, II 교과서의 자료는 대부분 최신의 자료가 아니며, 많은 자료들은 지질학 원론과 지구과학 개론 등의 국내 대학 교재에 제시된 수 십년 전의 자료를 그대로 따랐다. 또한 외국 대학의 지구과학 또는 지질학 개론서의 경우에서도 유사하게 수 십년 전의 자료를 제시하고 있다. 최근 국제 층서 위원회(ICS)에 의하여 연구 제시된 국제 층서 챠트(ICS 2000), 국제 지질 연대표(IGTS 2003) 및 지질 연대표(GTS 2004) 등의 많은 새로운 자료들이 제시되어 있다. 새로운 자료 중에서 중요한 것들에는 신생대의 고제3기와 신제3기, 석탄기의 미시시피아세와 펜실베니아세, 원생이언의 고원생대, 중원생대 및 신원생대 그리고 시생이언의 시시생대, 고시생대, 중시생대 및 신시생대를 들 수 있다. 이들 새로운 지질 연대 자료는 새로운 지구과학 교과서 집필시 인용되어야 할 것이다.

  • PDF

Subdivision of Precambrian Time and Precambrian Stratigraphy of North-eastern Asia and some problems on the Korean Geological terms (선캠브리아의 지질시대 구분 및 동북 아시아 선캠브리아의 층서와 이에 관한 우리말 용어의 문제점)

    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 1996
  • The increament of crustal thickness, continental growth and evolution, plate tectonic movements, and mega-impacts of meteorites have been worldwidely studied in the subdivision of Precambrian. In many subdivision methods of Precambrian Eon and Eonthem, the division based on the principle of the Plate tctonic movement referred internationally, is as follows, $L^AT_EX$ The rationality of this subdivision and some problems in the currently adopted stratigraphic subdivision of Precambrian Eonthem will by commented, and the validity of English and Korean Geological terminology on the Precambrian stratigraphy of northeastern Asia will be discussed also.

  • PDF

$^{40}Ar-^{39}39/Ar$ Biotite and Plagioclase Ages of the Gneeisses from Gyeonggi Massif (경기육괴 편마암의 흑운모와 사장석 $^{40}Ar-^{39}39/Ar$ 연대)

  • 박계헌;송용선
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.152-160
    • /
    • 2004
  • $^{40}Ar-^{39}39/Ar$ ages were determined from the biotites and plagioclases separated from the Precambrian gneisses of Gyeonggi Massif. Biotites yield $1,294{\pm}46,\;1,241{\pm}39\;and\;1,217{\pm}39Ma(2{\sigma}\;errors)$, and plagioclases yield $934{\pm}25,\;872{\pm}19,\;819{\pm}15(2{\sigma})Ma$. These ages are significantly different from the U-Pb zircon ages obtained from the identical samples ($1,613{\pm}51~2,168{\pm}24Ma(2{\sigma})$, Song et al., 2001). The ages of biotites and plagioclases can be interpreted to represent independent regional thermal events. The Mesoproterozoic ages recorded by the biotites can be interpreted as a consequence of regional metamorphism followed by differential uplift. We propose that plagioclases record Neoproterozoic ages which are related with igneous activities under the regional extensional regime, related with the breakup of the supercontinent Rodinia existed at that time.

Review on the Geologic Time Scale in Earth Science Textbooks of Korea and Other Countries and on the International Geologic Time Scale (국내외 지구과학 교과서의 지질 연대와 국제 지질 연대 자료의 검토)

  • Kim, Kyung-Soo;Kim, Jeong-Yul
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.624-629
    • /
    • 2005
  • Numerical data of the geological time scale in Earth Science I, II textbooks and those of University textbooks of Korea and other countries are briefly reviewed. Numerical data of the geologic time scale shown in Earth Science I, II textbooks are mostly out of date and many of them follow those in the University textbooks of Korea. The same situation is apparent for introductory Earth Science or Geology textbooks of other countries as old data exist in their text books as well. There are many new data in the International Stratigraphic Chart (ISC 2000) and International Geologic Time Scale (IGTS 2003) recently updated by International Commission on Stratigraphy (ICS) and A Geologic Time Scale (GTS 2004). Among the new data, some important things are Paleogene and Neogene Periods of Cenozoic Era, Mississippian and Pensilvanian Epochs of Carborniferous Period, Paleoproterozoic, Mesoproterozoic, and Neoproterozoic Eras of Proterozoic Eon, and Eoarchean, Paleoarchean, Mesoarchean, and Neoarchean Eras of Archean Eon. These new data should be used in the new Earth Science textbooks.

Precambrian Crustal Evolution of the Korean Peninsula (한반도 선캠브리아 지각진화사)

  • Lee, Seung-Ryeol;Cho, Kyung-O
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.89-112
    • /
    • 2012
  • The Korean Peninsula consists of three Precambrian blocks: Nangrim, Gyeonggi and Yeongnam massifs. Here we revisited previous stratigraphic relationships, largely based on new geochronologic data, and investigated the crustal evolution history of the Precambrian massifs. The Precambrian strata have been usually divided into lower crystalline basements and upper supracrustal rocks. The former has been considered as Archean or Paleoproterozoic in age, whereas the latter as Paleoproterozoic or later. However, both are revealed as the Paleoproterozoic (2.3-1.8 Ga) strata as a whole, and Archean strata are very limited in the Korean Peninsula. These make the previous stratigraphic system wrong and require reconsideration. The oldest age of the basement rocks can be dated as old as Paleoarchean, suggested by the occurrence of ~3.6 Ga inherited zircon. However, most of crust-forming materials were extracted from mantle around ~2.7 Ga, and produced major portions of crust materials at ~2.5 Ga, which make each massif a discrete continental mass. After that, all the massifs belonged to continental margin orogen during the Paleoproterozoic time, and experienced repeated intracrustal differentiation. After the final cratonization occurring at ~1.9-1.8 Ga, they were stabilized as continental platforms. The Nangrim and Gyeonggi massif included local sedimentary deposition as well as igneous activity during Meso-to Neoproterozoic, but the Yeongnam massif remained stable before the development of Paleozoic basin.

Geologic Age of Quartz Schist - Quartzite from Yeongam and Yeongsanpo Areas around Southwestern Part of Ogcheon Belt (옥천대 서남부 영암과 영산포 석영편암-규암의 지질시대)

  • Choi, Sung-Ja;Kim, Dong-Yeon;Song, Kyo-Young
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.155-165
    • /
    • 2016
  • Quartz schist - quartzite is often intercalated in metasedimentary rocks of Ogcheon belt or aligned parallel to the boundary between Yeongnam massif and Ogcheon belt. However, stratigraphic sequence and or geologic age of the rocks has been still variable among authors as Precambrian or Paleozoic. In this study, we carried out SHRIMP U-Pb age data of detrital zircons from Yeongam and Yeongsanpo areas and compared ours with other zircon ages from other areas. The detrital zircons from the studied area show no age younger than 1.8 Ga but yielded clusters at Neoarchean (2.5 Ga) and Paleoproterozoic (1.8 Ga). On the other hand, the age range of zircon U-Pb dating of Paleozoic quartzites yielded from Archean to middle Paleozoic and clusters at Paleoproterozoic, Neoproterozoic and Paleozoic. The characteristics of the zircon age range and the dominant age peak might become a key to classify the Proterozoic to Paleozoic quartz schists-quartzites, which ages are still remained under controversy. Based on the statistical results of the zircon ages in this study, quartz schist - quartzite from Yeongam and Yeongsanpo is considered to be deposited during Proterozoic.

SHRIMP U-Pb Zircon Ages of the Jinju Formation and Silla Conglomerate, Gyeongsang Basin (경상분지 진주층 및 신라역암의 SHRIMP U-Pb 저어콘 연령분포 및 그 의미)

  • Lee, Tae-Ho;Park, Kye-Hun;Chun, Jong-Hwa;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.89-101
    • /
    • 2010
  • To constrain the depositional ages of the Gyeongsang sedimeantary formations, SHRIMP U-Pb ages were determined from detrital zircons in three samples: (1) a pebble-bearing sandstone from the lowermost Jinju Formation of the Sindong Group and (2) two conglomerates from the Silla Conglomerate of the Hayang Group. Their concordia ages are $112.4{\pm}1.3(2{\sigma})$ Ma and $110.4{\pm}2.0(2{\sigma})$ Ma respectively. Such ages represent the maximum deposition ages for the lowermost Jinju Formation and Silla Conglomerate, indicating the deposition of the Jinju Formation started from late Aptian and lasted to early Albian, then deposition of the rather thin Chilgok Formation and Silla Conglomerate was followed during the Albian. The age distribution of the analyzed detrital zircons indicates the presence of protoliths, or zircons derived from them, regarding a wide span of igneous activities from Mesozoic to Archean. Among such ages, there are Mesoproterozoic, Neoproterozoic and Paleozoic igneous activities, which have not been known or seldom reported from Korean peninsula. These ages further suggest the possible presence of rocks with such ages during the deposition periods or their derivation through a long river system developed into the continents at the time of deposition.

CHIME Ages of Precambrian Rocks from the Goseong-Ganseong Area, Northeastern Part of the Gyeonggi Massif, and Their Tectonic Implications (경기육괴 북동부 고성-간성 지역 선캠브리아 암석의 CHIME 연대와 그 지체구조적 의의)

  • Cho, Deung-Lyong;Suzuki, Kazuhiro;Chwae, Uee-Chan;Adachi, Mamoru
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.1 s.47
    • /
    • pp.1-11
    • /
    • 2007
  • CHIME (chemical Th-U-total Pb isochron) geochronology were made for Precambrian rocks from Goseong-Ganseong area, northeastern part of the Gyeonggi massif. Zircon and/or monazite grains from orthogneisses give $1672{\pm}69\;to\;1414{\pm}36Ma$ ages, and monazite grains from paragneisses yield similar ages ranging from $1703{\pm}70\;to\;1395{\pm}97Ma$ suggesting that $1.7{\sim}1.4Ga$ igneous intrusions and coeval metamorphisms were occurred over the area. Together with reported prevailing $1.9{\sim}1.8Ga$ igneous activities and regional metamorphism from the Cyeonggi massif, our age data from Goseong-Ganseong area would be potentially correlated with long-lived $(1.8{\sim}1.3Ga)$ global tectonotermal events in marginal outgrowth of supercontinent Columbia which was finally assembled by collisional orogenies at ${\sim}1.8Ga$. Petrological and geochmical studies, however, should be followed to confirm this tectonic interpretation.

Occurrence and Chemical Composition of Dolomite from Zhenzigou Pb-Zn Deposit, China (중국 젠지고우 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.177-191
    • /
    • 2021
  • The Zhenzigou Pb-Zn deposit, one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. Based on mineral petrography and paragenesis, dolomites from this deposit are classified three type (1. dolomite (D0) as hostrock, 2. dolomite (D1) in layer ore associated with white mica, quartz, K-feldspar, sphalerite, galena, pyrite, arsenopyrite from greenschist facies, 3. dolomite (D2) in vein ore associated with quartz, apatite and pyrite from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.03Mg0.94-0.98Fe0.00-0.06As0.00-0.01(CO3)2(D0), Ca0.97-1.16Mg0.32-0.83Fe0.10-0.50Mn0.01-0.12Zn0.00-0.01Pb0.00-0.03As0.00-0.01(CO3)2(D1), Ca1.00-1.01Mg0.85-0.92Fe0.06-0.11 Mn0.01-0.03As0.01(CO3)2(D2), respectively. It means that dolomites from the Zhenzigou deposit have higher content of trace elements compared to the theoretical composition of dolomite. Feo and MnO contents of these dolomites (D0, D1 and D2) contain 0.05-2.06 wt.%, 0.00-0.08 wt.% (D0), 3.53-17.22 wt.%, 0.49-3.71 wt.% (D1) and 2.32-3.91 wt.%, 0.43-0.95 wt.% (D2), respectively. The dolomite (D1) from layer ore has higher content of these trace elements (FeO, MnO, ZnO and PbO) than dolomite (D0) from hostrock and dolomite (D2) from quartz vein. Dolomites correspond to Ferroan dolomite (D0 and D2), and ankerite and Ferroan dolomite (D1), respectively. Therefore, 1) dolomite (D0) from hostrock is a Ferroan dolomite formed by marine evaporative lagoon environment in Paleoproterozoic Jiao Liao Ji basin. 2) Dolomite (D1) from layer ore is a ankerite and Ferroan dolomite formed by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. 3) Dolomte (D2) from quartz vein is a Ferroan dolomite formed by hydrothermal fluid origined Mesozoic intrusion.