• Title/Summary/Keyword: 중성용액

Search Result 185, Processing Time 0.018 seconds

Growth of Red-leaf Lettuce and Changes in Soil Solution Chemical Properties of Coir-dust Containing Root Media Influenced by Application Rates of Pre-planting Fused-Superphosphate (코이어 더스트 혼합상토에 용과린의 시비수준에 의한 적축면 상추의 생장과 근권부 화학성 변화)

  • Kim, Chang Hyeon;Choi, Jong Myung;Lee, Dong Hoon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.658-667
    • /
    • 2015
  • This research was conducted to investigate the influence of various levels of fused superphosphate as pre-planting fertilizer on the growth of red-leaf lettuce and changes in the chemical properties of the soil solution in three root media, namely coir-dust plus expanded rice hull (8:2, v/v; CD+ERH), carbonized rice hull (6:4; CD+CRH), or ground and aged pine bark (8:2; CD+GAPB). The amounts of fused superphosphate (FSP) incorporated into the three root media during formulation were controlled from 0 to $6.0g{\cdot}L^{-1}$ in $1.5g{\cdot}L^{-1}$ increments. The root media containing fertilizers were packed into 300 mL plastic pots and seedlings of red-leaf lettuce at the 3rd leaf stage were transplanted. After transplanting, the crops were fed with a solution of neutral fertilizer ($100mg{\cdot}L^{-1}$). The growth of red-leaf lettuce was investigated 5 weeks after transplanting and soil solutions were extracted and analyzed every week for pH, EC, and concentrations of macro-nutrients. The elevation of application rates of FSP in the three root media resulted in better growth, and the crops grown in CD+ERH and CD+GRPB had greater fresh and dry weights than those in CD+CRH when compared among the treatments of equal amounts of FSP. The pH and $PO_4{^{-3}}$ concentrations in the soil solution of CD+CRH at 3 weeks after transplant were in the ranges of 4.0 to 4.8 and 20 to $100mg{\cdot}L^{-1}$, respectively. These were lower pH and higher $PO_4{^{-3}}$ concentrations than those in CD+ERH and CD+GAPB. The $K^+$ concentrations were higher in CD+CRH than those in the other two root media, and the elevation of FSP application rates resulted in higher $Ca^{+2}$, $Mg^{+2}$ and $SO_4{^{-2}}$ concentrations in soil solution of the three root media. The $NO_3$-N concentrations in soil solution rose continuously during crop cultivation, implying that the leaching percentage was elevated. The soil solution EC varied, showing the same tendencies as the $NO_3$-N concentrations. The above results indicated that the CD+ERH and CD+GRPB media performed better than CD+CRH, and optimum application rates of FSP in the three root media were 4.5 to $6.0g{\cdot}L^{-1}$ for pot cultivation of red-leaf lettuce.

Synthesis, Spectroscopic, and Biological Studies of Chromium(III), Manganese(II), Iron(III), Cobalt(II), Nickel(II), Copper(II), Ruthenium(III), and Zirconyl(II) Complexes of N1,N2-Bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide (N1,N2-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide의 크롬(III), 망간(II), 철(III), 코발트(II), 니켈(II), 구리(II), 루테늄(III) 및 산화 지르코늄(II) 착물에 대한 합성과 분광학 및 생물학적 연구)

  • Al-Hakimi, Ahmed N.;Shakdofa, Mohamad M.E.;El-Seidy, Ahemd M.A.;El-Tabl, Abdou S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.418-429
    • /
    • 2011
  • Novel chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), and zirconyl(II) complexes of $N^1,N^2$-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide ($H_4L$, 1) have been synthesized and characterized by elemental, physical, and spectral analyses. The spectral data showed that the ligand behaves as either neutral tridentate ligand as in complexes 2-5 with the general formula $[H_4LMX_2(H_2O)]{\cdot}nH_2O$ (M=Cu(II), Ni(II), Co(II), X = Cl or $NO_3$), neutral hexadentate ligand as in complexes 10-12 with the general formula $[H_4LM_2Cl_6]{\cdot}nH_2O$ (M=Fe(III), Cr(III) or Ru(III)), or dibasic hexadentate ligand as in complexes 6-9 with the general formula $[H_2LM_2Cl_2(H_2O)_4]{\cdot}nH_2O$ (M = Cu(II), Ni(II), Co(II) or Mn(II), and 13 with general formula $[H_4L(ZrO)_2Cl_2]{\cdot}8H_2O$. Molar conductance in DMF solution indicated the non-ionic nature of the complexes. The ESR spectra of solid copper(II) complexes 2, 5, and 6 showed $g_{\parallel}$ >g> $g_e$, indicating distorted octahedral structure and the presence of the unpaired electron in the $N^1,N^2$ orbital with significant covalent bond character. For the dimeric copper(II) complex $[H_2LCu_2Cl_2(H_2O)_4]{\cdot}3H_2O$ (6), the distance between the two copper centers was calculated using field zero splitting parameter for the parallel component that was estimated from the ESR spectrum. The antibacterial and antifungal activities of the compounds showed that, some of metal complexes exhibited a greater inhibitory effect than standard drug as tetracycline (bacteria) and Amphotricene B (fungi).

Influence of Bicarbonate Concentrations in Irrigation Solution on Growth of Lettuce and Changes in Chemical Properties of Root Media (원수의 중탄산 농도가 근권 화학성 변화 및 상추의 생장에 미치는 영향)

  • Shin, Bo Kyoung;Son, Jung Eek;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • This study was conducted to investigate the influences of bicarbonate ($HCO_3^-$) concentrations in irrigation solution on growth of lettuce and change in chemical properties of root media. The blue leaf and red leaf lettuces with two true leaf stages were transplanted into 10 cm diameter plastic pots filled with perlite. The five treatments were made by dissolving $NaHCO_3$ into irrigation solution to reach 30, 70, 110, 150 and $180mg{\cdot}L^{-1}$ $HCO_3^-$. The crops were fed with fertilizer solution contained $HCO_3^-$ with various concentrations and controlled to $100mg{\cdot}L^{-1}$ in nitrogen concentration. The pH in soil solution of root media 10 weeks after transplant of blue lettuces were 7.04 and 7.10 in the treatments of 30 and $70mg{\cdot}L^{-1}$ of $HCO_3^-$, respectively. But those rose gradually after week 3 and finally reached 7.39, 7.48 and 7.56 at week 10 in the treatments of 110, 150 and $180mg{\cdot}L^{-1}\;HCO_3^-$, respectively. The pH in the treatments of 30 and $70mg{\cdot}L^{-1}\;HCO_3^-$ in cultivation of red leaf lettuce were around 6.65 during week 4 to week 8, but this rose abruptly and reached 6.92 and 7.01 at week 10, respectively. Those in the treatments of 110, 150, and $180mg{\cdot}L^{-1}\;HCO_3^-$ rose gradually and finally reached to 7.49, 7.53, and 7.58, respectively. The EC rose gradually after week 2 in all treatments of blue and red leaf lettuces. The change of macro ion concentrations in both blue and red leaf lettuces showed similar trends. The concentrations of $PO_4-P$, $Ca^{2+}$ and $Mg^{2+}$ increased gradually in all treatments of $HCO_3^-$ during cultivation of blue and red leaf lettuces. As the concentrations of $HCO_3^-$ in irrigation solution were elevated, the concentrations of $PO_4-P$, $Ca^{2+}$ and $Mg^{2+}$ became higher and that of ${SO_4}^{-2}$ became lower in soil solution of root media. The main reason of concentration changes were that $HCO_3^-$ influenced pH and the pH changes also affect the activities of the ions in soil solution of root media.

Physicochemical Stability of Anthocyanins from a Korean Pigmented Rice Variety as Natural Food Colorants (천연색소로서 한국산 유색미 안토시아닌의 안정성 연구)

  • Yoon, Joo-Mi;Cho, Man-Ho;Hahn, Tae-Ryong;Paik, Young-Sook;Yoon, Hye-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.211-217
    • /
    • 1997
  • The physical and chemical stability of anthocyanins from a Korean pigmented rice variety was investigated at various conditions of pH, temperature, metal ion, sugar, organic acid and light. The anthocyanin pigments were relatively stable with half-lives of 36 days (pH 2.0) and 17 days (pH 3.0), while they were decomposed in a day at neutral and basic pH of 7.0 and 9.0 at $25^{\circ}C$. The anthocyanins also showed high thermal stability at pH 3.0; the half-lives were 7.4 hr, 23.6 hr and 96.3 hr at $95^{\circ}C,\;75^{\circ}C\;and\;50^{\circ}$, respectively. Addition of di- and tri-valent metal ions at pH 3.0 resulted in the increase of color intensity and stability throughout 21 days of storage periods at $25^{\circ}C$. Most sugars added accelerated the degradation of anthocyanin pigments, so that fructose showed the greatest degradation effect on the pigments. Addition of citric acid at pH 3.0 increased stability of anthocyanins, while tartaric acid decreased stability. The anthocyanins were very sensitive on light irradiation with a degradation half-life of 14 hr under 20,000 lux-light dosage at pH 3.0.

  • PDF

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.