• Title/Summary/Keyword: 중력지오이드

Search Result 68, Processing Time 0.017 seconds

Development of Hybrid Geoid using the Various Gravimetric Reduction Methods in Korea (다양한 중력학적 환산방법을 적용한 한국의 합성지오이드 개발)

  • Lee, Dong-Ha;Lee, Suk-Bae;Kwon, Jae Hyoun;Yun, Hong-Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.741-747
    • /
    • 2008
  • Nowadays, the accuracy of the geoid model has been improved through development of the combination model which was composed of traditional gravimetric geoid and geometric geoid by the GPS/leveling data in USA and Japan. It is a state of the art method in geoid modeling field that what so called hybrid geoid. In this paper, as a basic study to develop Korean hybrid geoid model, we studied gravimetric geoid solutions using three gravity reduction methods (Helmert's condensation method, RTM method and Airy-isostatic method) and evaluated the usefulness of each method in context of precise geoid. The gravimetric geoid model were determined by restoring the gravity anomalies (included TC) and the indirect effects were made from various reduction methods on the EIGEN-CG03C reference field. The results are compared with respect to the geometric geoid undulation determined from 498 GPS/leveling after LSC fitting. The results showed that hybrid geoid with RTM (Residual terrain model) reduction method was most accurate method and the value of the difference compared to geometric geoid was $0.001{\pm}0.053m$.

A Comparison of the Gravimetric Geoid and the Geometric Geoid Using GPS/Leveling Data (GPS/Leveling 데이터를 이용한 기하지오이드와 중력지오이드의 비교 분석)

  • Kim, Young-Gil;Choi, Yun-Soo;Kwon, Jay-Hyoun;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.217-222
    • /
    • 2010
  • The geoid is the level surface that closely approximates mean sea level and usually used for the origin of vertical datum. For the computation of geoid, various sources of gravity measurements are used in South Korea and, as a consequence, the geoid models may show different results. however, a limited analysis has been performed due to a lack of controlled data, namely the GPS/Leveling data. Therefore, in this study, the gravimetric geoids are compared with the geodetic geoid which is obtained through the GPS/Leveling procedures. The gravimetric geoids are categorized into geoid from airborne gravimetry, geoid from the terrestrial gravimetry, NGII geoid(geoids published by National Geographic Information Institute) and NORI geoid(geoi published by National Oceanographic Research Institute), respectively. For the analysis, the geometric geoid is obtained at each unified national control point and the difference between geodetic and gravimetric geoid is computed. Also, the geoid height data is gridded on a regular $10{\times}10-km$ grid so that the FFT method can be applied to analyze the geoid height differences in frequency domain. The results show that no significant differences in standard deviation are observed when the geoids from the airborne and terrestrial gravimetry are compared with the geomertric geoid while relatively large difference are shown when NGII geoid and NORI geoid are compared with geometric geoid. Also, NGII geoid and NORI geoid are analyzed in frequency domain and the deviations occurs in long-wavelength domain.

A Comparison of the Gravimetric Geoid and the Geometric Geoid Using GPS/Leveling Dataa (GPS/Leveling 데이터를 이용한 기하지오이드와 중력지오이드의 비교 분석)

  • Kim, Young-Gil;Choi, Yun-Soo;Yoon, Ha-Soo;Jung, Seung-Kyoon;Lee, Sang-Jin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.279-280
    • /
    • 2010
  • 지오이드는 수직 높이 체계의 기준으로 다양한 방법으로 측정 된 중력값을 이용하여 계산된다. 따라서 지오이드의 계산에 사용된 관측자료에 따라 지오이드 사이에 차이가 발생할 수 있으나 이에 대한 연구가 상대적으로 미흡한 실정이다. 그 이유는 GPS/Leveling 자료와 같은 검증자료가 충분치 않아 제한된 범위 내에서만 분석이 수행되어 왔기 때문이다. 본 연구에서는 GPS/Leveling 자료를 이용하여 계산된 기하지오이드를 기준으로 중력기반 지오이드를 비교 분석하였다.

  • PDF

Construction of the Airborne Gravity Based Geoid and its Evaluation (항공중력기반 지오이드 모델 구축 및 검증)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.159-167
    • /
    • 2009
  • To obtain the gravity data with consistent quality and good distribution over Korea, to overcome the difficulties in constructing precision geoid from biased distribution of ground data, to resolve the discrepancy between the ground and ocean gravity data, an airborne gravity survey was conducted from Dec. 2008 to Jan. 2009. The data was measured at the average flying height of 3,000m and the data with cross-over error of 2.21mGal is obtained. The geoid constructed using this airborne gravity data shows the range of 9.34 $\sim$ 33.88m. Comparing the geoid with respect to the GPS/levelling data, a precision of 0.145m is obtained. After fitting, the degree of fit to GPS/levelling data was calculated about 5cm. It was found that there exists large biases in the area of south-western and northern part of the peninsular which is considered to be the effect of distorted vertical datum in Korea. Thus, more investigation on vertical datum would be needed in near future.

Development of Korean Geoid Model and Verification of its Precision (우리나라 지오이드 모델 구축 및 정밀도 검증)

  • Lee, Jisun;Kwon, Jay Hyoun;Baek, Kyeong Min;Moon, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.493-500
    • /
    • 2012
  • The previous geoid model developed in early 2000s shows 14cm level of precision due to the problems on distribution, and quality of the land gravity and GPS/Leveling data. From 2007, the new land and airborne gravity data as well as GPS/Leveling data having high quality and regular distribution has been obtained. In 2011, a new gravimetric geoid model has been constructed with precision of 5.29cm which was improved about 27% comparing to the previous model. However, much more land gravity data has been collected at the control point, bench marks and triangulation points since 2010. Also, GPS/Leveling data having 10km spacing over whole country has been obtained through the project which is for the construction of new control points. In this study, new gravimetric geoid has been calculated based on the all available gravity data up to present. The geoid height shows the range from 18.05m to 32.70m over whole country and its precision is 5.76cm. The degree of fit and precision of hybrid geoid model are 3.60cm and 4.06cm, respectively. At the end, 3.35cm of the relative precision in 15km baseline has been calculated to confirm its practical usage. Especially, it has been founded that regional bias occurred at the Kangwon and coastal area due to problems on the leveling data. Also, some inland points show inconsistent large difference which needs to be verified by analyzing the unified control points results.

An Analysis of DEM and Gravity Effect for Precision Geoid Determination in Korea (우리나라 정밀지오이드 구축을 위한 지형자료 및 중력자료 영향 분석)

  • Lee, Bo-Mi;Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Yong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.519-527
    • /
    • 2008
  • The basic elements in precise geoid determination are the gravity and topographic data with reliable quality and distribution. In this study, the effect of the gravity and topographic data on the precision of the geoid are analyzed through simulations in which the quality and distribution of the data are artificially controlled. It was found that the distribution of the topographic data has more effect on the precision of geoid than the quality of the it. This leads to the conclusion that the SRTM (Shuttle Radar Topography Mission) DTM (Digital Terrain Model) with resolution of 90m is qualified as a topographic data in geoid determination. In the experiments with gravity data, on the other hand, the aliasing effect caused by the low data density caused large errors in geoid. It was found that the more gravity data especially in north-eastern mountainous area is needed for precise geoid determination in Korea.

Determination of complementary surveying area for precise geoid development in Korea (정밀지오이드 구축을 위한 보완측정지역 선정)

  • Lee, Bo-Mi;Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.35-39
    • /
    • 2009
  • The equal distribution of the gravity as well as the topographic data is an essential factor in the precision geoid determination. In this study, the area where needs the supplementary gravity survey is assigned through a simulation to build the 5cm level geoid. Based on the current distribution of the gravity data which results in the 8cm level of the precision over all, we extract the area which shows the errors larger than 30 cm. Then, the area is assumed to be filled with gravity data with 2km interval which is turned out to be successfully improving the overall accuracy up to 5cm. Therefore, it is recommended that the supplementary gravity survey should be conducted in mountainous area such as eastern and mid-northern part of Kangwon-Do to achieve the 5cm accuracy on the geoid.

  • PDF

A Study on Geoid Model Development Method in Philipphines (필리핀 지오이드모델의 개발방안 연구)

  • Lee, Suk-Bae;Pena, Bonifasio Dela
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.699-710
    • /
    • 2009
  • If a country has her geoid model, it could be determine accurate orthometric height because the geoid model could provide continuous equi-gravity potential surface. And it is possible to improve the coordinates accuracy of national control points through geodetic network adjustment considering geoidal heights. This study aims to find the best way to develop geoid model in Philippines which have similar topographic conditions as like Malaysia and Indonesia in Eastsouth asia. So, in this study, it is surveyed the general theories of geoid determination and development cases of geoid model in Asia and it is computed that the geoidal heights and gravity anomalies by spherical harmonic analysis using EGM2008, the latest earth geopotential model. The results show that first, the development of gravimetric geoid model based on airborne gravimetry is needed and second, about 200 GPS surveying data at national benchmark is needed. It is concluded that it is the most reasonable way to develop the hybrid geoid model through fitting geometric geoid by GPS/leveling data to gravimetric geoid. Also, it is proposed that four band spherical Fast fourier transformation(FFT) method for evaluation of Stokes integration and remove and restore technique using EGM2008 and SRTM for calculation of gravimetric geoid model and least square collocation algorithm for calculation of hybrid geoid model.

The Update of Korean Geoid Model based on Newly Obtained Gravity Data (최신 중력 자료의 획득을 통한 우리나라 지오이드 모델 업데이트)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keum, Young-Min;Moon, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2011
  • The previous land gravity data in Korea showed locally biased irregular distribution. Especially, this problem was more serious in the mountainous area where the data density was significantly low. The same problem appeared in GPS/Levelling data thus the precision of the geoid could not be improved. From 2008, new gravity and GPS/Levelling data has been collected by the unified control point and survey on the benchmark project which were funded by the national geographic information institute. The newly obtained data has much better distribution and precision so that it could be used for update precision of geoid model. In this study, the new precision geoid has been calculated based old and new gravity data and this model showed 5.29cm of precision compared to 927 points of GPS/Levelling data. And the degree of fit and precision of hybrid geoid has been calculated 2.99cm and 3.67cm. The new gravimetric geoid has been updated about 27% over whole country. And it showed 42% of precision update due to collection of new gravity data on the Kangwon/Kyeongsang area which showed quite low distribution. In 2010, about 4,000 points of gravity and 300 points of GPS/Levelling data has been obtained by unified control and survey on benchmark project. We expect that new data will contribute to updating geoid precision and veri tying precision more objectively.

Gravimetric Geoid Determination by Fast Fourier Transform in and Around Korean Peninsula (FFT에 의한 한반도 일원에서의 중력지오이드 결정)

  • 이석배;윤홍식;최재화
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.1
    • /
    • pp.49-58
    • /
    • 1996
  • This paper deals with the gravimetric solution of geoid by Fast Fourier Transform(FFT) technique in and around Korean Peninsula. The used reference surface is OSU91A geopotential model up to degree and order 180 refered to GRS80. The remove and restore technique was applied to obtain the geoidal height in this paper. And the FFT with 20% window was applied to compute the medium wavelength effect from terrestrial gravity anomalies. For the comparison of computed results, the geometric geoidal height was derived from GPS/Levelling data. According to the comparison, the mean value and RMSE of the differences are 0.3819m and 0.4695m respectively.

  • PDF