• Title/Summary/Keyword: 중량 앵커리지

Search Result 2, Processing Time 0.014 seconds

Estimation of Tension Forces of Assembly Stay Cables Connected with Massive Anchorage Block (중량 앵커리지 블록과 연결된 조립 스테이 케이블의 장력 추정)

  • Jeong, Woon;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.346-353
    • /
    • 2005
  • In this paper, the tension of assembly stay cable connected with massive anchorage block was calculated through back analysis of in-situ frequencies measured from a stadium structure. Direct approach to back analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method can search the optimal tension without regard to the initial ones and has a rapid convergence rate. To verify the reliability of back analysis, Tension formulas proposed by Zui et al. and Shimada were used. Tensions estimated by three methods are compared with the design tension, and are in a reasonable agreement with an error of more or less than 15%. Therefore, it is shown that back analysis applied in this paper is appropriate for estimation of cable tension force.

Estimation of Tension Forces of Assembly Stay Cables Connected with Massive Anchorage Block (중량 앵커리지 블록과 연결된 조립 스테이 케이블의 장력 추정)

  • Jeong, Woon;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.435-440
    • /
    • 2004
  • In this paper, the tension of assembly stay cable connected with massive anchorage block was calculated through back analysis of in-situ frequencies measured from a stadium structure. Direct approach to back analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method can search the optimal tension without regard to the initial ones and has a rapid convergence rate. To verify the reliability of back analysis, Tension formulas proposed by Zui et al. and Shimada were used. Tensions estimated by three methods are compared with the design tension, and are in a reasonable agreement with an error of more or less than 15%. Therefore, it is shown that back analysis applied in this paper is appropriate for estimation of cable tension force.

  • PDF