• Title/Summary/Keyword: 중광물 분리

Search Result 71, Processing Time 0.029 seconds

Recovery of Valuable Minerals from Sea Water by Membrane Separation and Adsorption Process: A Review (막 분리와 흡착 과정을 통한 해수로부터의 주요 광물 회수: 리뷰)

  • Jeon, Sungsu;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • Ever increasing global energy demand gives rise to uncontrollable environmental pollution. Demand on fossil fuel and consequent carbon emission leads to global warming and climate change. Nuclear energy is an alternative source to generate clean energy but mining of nuclear fuel is associated with harmful chemicals. Mining of valuable minerals from sea water by membrane separation process is a cost effective along with environmental friendly process. Separation and adsorption based mining of valuable minerals from sea water are another efficient process. Recovery of actinides from rare earth elements are very challenging and expensive process. Pressure driven membrane separation process is economically more viable along with environmental process. In this review membrane separation process are based on polyether sulfone, polyamide, polyimide, polyamidoxine and hybrid membranes. In case of adsorption process, mainly amidoxime kind of adsorbent are discussed.

The Extraction of Ca in Electric arc Furnace Slag for CO2 Sequestration (CO2고정화(固定化)를 위한 전기로제강(電氣爐製鋼)슬래그의 칼슘성분(成分) 침출(浸出))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.64-71
    • /
    • 2013
  • Mineral carbonation has been proposed as a possible way for $CO_2$ sequestration. The electric arc furnace slags consist of calcium, magnesium and aluminum silicates in various combinations. If they could be used instead of natural mineral silicates for carbonation, considerable energy savings and $CO_2$ emissions reductions could be achieved. Indirect aqueous carbonation of the slags consists of two steps, extraction of calcium and carbonation. Acetic acid leaching of electric arc furnace slags had been already studied to extract Ca in them, but it was reported that the carbonation of the extracted $Ca^{2+}$ in the leached solution would suffer from too slow kinetics, even at high pressure of $CO_2$. In this work, to develop more efficient extraction of the electric arc furnace slags, hydrochloric acid leaching to separate calcium from them was studied, and the results were compared with the acetic acid ones. The phase boundary between $Ca^{2+}$ and $CaCO_3$ in the solution with pH was determined by thermodynamic calculations. Hydrochloric acid was more effective than acetic acid for the extraction of Ca in electric arc furnace slag, and there is a possibility to recycle an unreacted hydrochloric acid in the leached solution by electrolysis or evaporation.

Rearing Olive Flounder Paralichthys olivaceus in a Water Reuse System with Mineral Particles and foam Fractionator (광물미립자와 포말분리장치를 이용한 사육수 재사용시스템에서의 넙치(Paralichthys olivaceus) 사육실험)

  • 민병서;강필애
    • Journal of Aquaculture
    • /
    • v.13 no.3
    • /
    • pp.223-230
    • /
    • 2000
  • A rearing experiment of the olive flounder was performed in a set of water-reuse system to test the reusability of the water in culture system with (i) a foam fractionator to separate particles from water and (ii) a culture tank contain mineral particles to filter the metabolic wastes by adsorption and/or decomposition. Two kinds of commercially processed loess particles and a dolomite particle (all 50 ${\mu}$diameter) were tested. The mineral particles were suspended in the culture tank and the water was pumped into the foam fractionator, where the particles were separated and drained out with foam from the system. In a circular culture tank of 4.8 m in diameter with 10 d water, the juvenile olive flounders (23.1 g/fish, 5,555 fish, 128 kg total body weight) were stocked. 90 % of the rearing water was reused and turnover rate of the water in the tank was two times per hour. Water temperature was maintained 17${\pm}$1$^{\circ}C$. At the end of 75 day-experimental rearing, 5,532 flounders, weighing 468 kg, were harvested. An individual flounder grew to 84.6 g of body weight. The final stocking density was 26.0 kg/$m^2$. No diseases were observed during the experiment.

  • PDF

Geochemical Implication of Rare Earth Element pattern and Rb-Sr mineral isochron from consituent minerals in the Naedeokri-Nonggeori granite, Yeongnam Massif, Korea (영남육괴 북동부 내덕리-농거리 화강암내 구성광물의 희토류원소 분포도 및 Rb-Sr 광물연대의 지구화학적 의의)

  • Seung-Gu Lee;SeungRyeol Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • The Naedeokri and Nonggeori granites are early Proterozoic granites of the Taebaek-Sangdong area in the northeastern part of the Yeongnam Massif. In this paper, rare earth elements (REEs) concentrations of the minerals in Naedeokri and Nonggeori granites and Rb-Sr mineral isochron age are reported. Except zircon, the constituent minerals such as mica, feldspar, quartz, and tourmaline show LREE-enriched and HREE-depleted REE patterns with relatively large Eu negative anomaly. However, zircon has geochemical characteristic of LREE- and HREE-enriched REE pattern with large Eu positive anomaly. This pattern suggests that zircon should be hydrothermal zircon due to deuteric hydrothermal alteration. In addition, the Rb-Sr mineral age of Naedeokri granite indicates an age value of 1.814±142(2σ) Ma. The Rb-Sr whole rock age including pervious data of Naedeokri and Nogggeori granite indicates an age value of 1,707±74(2σ) Ma. This value is younger than the Sm-Nd isochron of 1.87 Ga, indicating that the Rb-Sr isotope system may be re-homogenized by hydrothermal alteration during the transition from a magmatic to a hydrothermal system.

Characteristics of Heavy Minerals in the South East Yellow Sea Mud (SEYSM) and South West Cheju Island Mud (SWCIM) (황해남동니질대와 제주남서니질대 표층퇴적물의 중광물 특성 비교 연구)

  • Koo, Hyo Jin;Cho, Hyen Goo;Lee, Bu Yeong;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.93-102
    • /
    • 2017
  • Heavy mineral provide an important information for sediment provenance as well as a potential submarine mineral resources. We compared the heavy mineral characteristics between Southeastern Yellow Sea Mud (SEYSM) and Southwestern Cheju Island Mud (SWCIM) surface sediments. We separated heavy minerals from 28 surface sediments in each mudbelt, and then carried out stereo-microscopic, field-emission scanning electron microscopic, energy dispersive spectroscopic and electron probe microanalysis to characterize the type, abundance, mineralogical properties and distribution pattern of heavy mineral. Amphibole and epidote, which are two major heavy minerals, account for more than 70% of total heavy minerals. Zircon and sphene contents are more abundant in SEYSM, whereas apatite and rutile contents are more abundant in SWCIM. Monazite only occurs in some area of SEYSM. Sphene and monazite content decrease to the south in SEYSM. Both garnet-zircon index (GZi) and rutile-zircon index (RuZi) are low in SEYSM but high in SWCIM. Amphiboles in SEYSM primarily correspond to hornblende, however those in SWCIM represent variable composition from pargasite, tshermakite, hornblende to tremolite. Garnets in SEYSM have high Mg and low Ca, but those in SWCIM have low Mg with variable Ca. Different heavy mineral characteristics between SEYSM and SWCIM suggests that sediments in each mudbelt have different provenances. Although this study implies that SEYSM sediment may mostly come from nearby Korean western rivers such as the Keum and Han rivers, this study does not suggest any idea of the source area of SWCIM sediment. Further study is needed to interpret the provenance and transportation mechanism of mudbelt sediments through the heavy mineral research for the river sediments flowing into the Yellow Sea and much more marine sediments.

Effect of Cation and Ionic Strength on Dispersion and Coagulation of Hwangto and Clay Minerals (양이온의 종류와 농도에 따른 황토와 점토광물의 분산과 응집)

  • Park, Bo-Kyeong;Kim, Kyung-Min;Kim, Young-In;Yum, Seo-Yun;Lee, Jeong-Woo;Hyung, Seuug-Woo;Hwang, Jun-Ho;Kim, Yu-Mi;Kong, Mi-Hye;Kim, Cheong-Bin;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.249-259
    • /
    • 2009
  • The objective of this research was to find out the physical properties, such as dispersion and coagulation, of soil minerals depending on the types and concentrations of the cations in aqueous solution. Hwangto samples were obtained from 90 to 130 cm from surface at Jangdong-ri, Donggang-Myon, Naju, Chonnam Province. The clay fraction (< $2\;{\mu}m$) was separated by sedimentation method from the bulk soils. Both Hwangto and clay fractions, and the same samples after removal of amorphous and crystalline iron oxides were used in this experiment. The effect of 4 cations ($Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) and their concentrations on settling speed and basal spacing of the minerals were observed to examine the physical properties of the soil and clay minerals. Hwangto mainly consisted of quartz, and the clay fractions consisted of kaolinite, illite, and vermiculite. The bulk soils contained 16.3 mg/kg of amorphous iron oxides and 436 mg/kg of crystalline iron oxides. Clay fractions were dispersed better than bulk soils due to their smaller particle size than that of the bulk samples in the aqueous solution. The bulk and clay samples were dispersed better when iron oxides were removed because of coating of minerals by the iron oxides. Clay minerals were settled faster as the charge and the concentration of cations added increased. The d-spacing of kaolinite and illite did not change when 4 types of cations were added. The d-spacing of vermiculite showed $14.04\;{\AA}$ when divalent cations were added while that of vermiculite showed $13.9\;{\AA}$ when monovalent cations were added. It may be attributed to the hydration radii of cations. This study indicated that both coating of iron oxides on minerals and types and concentrations of cations affect dispersion of minerals in solution and d-spacing of expanding clay minerals such as vermiculite.

Research Trends in Flotation of Waste-plastics and Its Use as Functional Materials (폐플라스틱의 부유선별 및 기능성 소재로의 활용 연구동향)

  • Han, Yosep;Kim, Rina;Hong, Hye-Jin;Park, In-Su;Kim, Dong-Gyun;Kim, Yun Ho;Jeon, Ho-Seok;Chang, Hankwon
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.15-26
    • /
    • 2020
  • In recent years, there is an increasing interest in environmental friendly treatment of waste-plastics in terms of the generation of microplastics. Accordingly, the recycling of waste-plastics is very important because it provides advantages of volume reduction, mitigation of carbon dioxide emission, and reproduction of value-added products. In particular, in order to recycle the eco-friendly waste-plastics, it is necessary to use a physical separation methods, and among them, flotation separation, which can separate material (i.e., polymer component) in waste-plastics is well known as a very effective separation method in terms of material recycle. Therefore, in this review, the research trend of flotation separation for effective separation of mixture waste-plastics was investigated. In addition, through the reported research results, approaches to use as new functional materials from polymers, which are raw materials for waste-plastics, are summarized.

The Separation and Determination of Rare Earth Elements by Ion-Association Chromatography (희토류 원소의 분리 및 정량을 위한 이온회합 크로마토그래피)

  • Lee, Seung Hwa;Lee, Cheol;Jeong, Koo Soon
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.69-75
    • /
    • 1990
  • An ion-association chromatography was applied for the separation and determination of individual rare earth elements (REE) contained in mineral monazite. Prior to the determination, the group separation of REE was achieved by a cation exchange column of Dowex 5OW-X8 resin. The quantitative recovery of REE by the resin column, free from coexisting elements in monazite, was confirmed with radioactive tracers as well as with ICP-MS. Individual REE at ppm level was separated on reversed-phase column ($\mu$-Bondapak $C_{18}$) using gradient elution from 0.05 to 0.3 M $\alpha$-hydroxyisobutyric acid at pH 4.6. The individual REE was detected at 546 nm following post-column reaction with PAR (4-(2-pyridylazo)-resorcinol monosodium salt).

  • PDF

Gas Separations of Natural Zeolite by Chemical Treatments (화학처리에 의한 천연 Zeolite의 Gas 분리)

  • Im, Goeng
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.67-75
    • /
    • 1992
  • In the our country, especially in Yeongil and Wolsung area, abundant authigenic zeolites are found from the tuffaceous sediments and volcanic rocks of Miocene age showing wide variation in their mineralogy and abundance from horizon to horizon. The principal zeolite species identified are clinopti-lolite. mordenite. heulandite. ferrierite, and erionite. etc. Zeolite minerals are widely used in many countries in the following applications; (a) in air separation adsorption processes; (b)as desiccants; (c)in inorganic building materials; (d)in papermaking; (e)in fertilizers; (f)as soilconditioners-this application is based upon the ability of the zeolite to ion exchange with soil nutrients; (g)in the treatment of radioactive wastes; and (h)as adsorbents for toxic gases, etc. In the present paper, using natural zeolite mordenite treated with IN hydrochloric acid or IN sodium chloride solution as column packings, separation characteristics of argon, nitrogen, carbon monoxide, and methane gases have been studied by gas chromatography. By the use of mordenite treated with hydrochloric acid solution, the tailing peak of methane showed from untreated mordenite was satisfactorily reduced, although it was difficult to separate it from carbon monoxide with a column activated at $300^{\circ}C$. Using a column activated at $350^{\circ}C$, methane could be separated from carbon monoxide easily but only carbon monoxide eluted as a bad defined peak. Mordenite treated with sodium chloride solution was generally similar to chromatograms obtained by using the untreated mordenite. Both the above chemical treatments of mordenite had little effect on the separations of argon and nitrogen. The separations and the HETP values obtained from natural zeolite mordenite treated with continuously hydrochloric acid and sodium chloride solutions were almost identical with those obtained with synthetic molecular sieve 5A zeolite. On the other hand, the efficiency of column was good in the range 20~3Oml/min of the carrier helium gas rate.

  • PDF

Hydrothermal Alteration Around the TA 26 Seamounts of the Tofua Volcanic Arc in Lau Basin, Tonga (통가국 라우분지 TA 26 해저산의 열수변질작용)

  • Cho, Hyen Goo;Kim, Young-Ho;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.233-247
    • /
    • 2012
  • We have researched the distribution and characteristics of seafloor hydrothermal deposits for the development of economic mineral deposits in the Lau Basin, Tonga since 2009. In this study, we interpreted hydrothermal alteration around TA 26 seamounts of the Tofua volcanic arc using X-ray diffraction analysis for bulk sample and preferred-oriented specimen of clay fraction. We used 2 core samples and several surface samples. Plagioclase and quartz are dominant mineral in the basement rock, whereas kaolin mineral and smectite are superior in marine surface sediments. Especially sulfate and sulfide minerals such as gypsum, barite, sphalerite, and pyrite are predominant in the vent sediments. When we compare the mineral composition between basement rock and sea surface sediments, argillic alteration zone composed of kaolin mineral and smectite could be produced by hydrothermal fluids. Based on the downcore variation of mineral assemblages, most portion of MC08H-06 core could be interpreted as argillic alteration zone composed of kaolin mineral and smectite except top 2 cm area. Various sulfate or sulfide minerals and argillic alteration zone suggest a high probability of massive sulfide deposits in the seafloor of the TA 26 seamount.