• Title/Summary/Keyword: 중공실린더

Search Result 6, Processing Time 0.017 seconds

The Effect of Gas Pressure on the Stiffness of Products Manufactured with Gas-Assisted Injection (가스성형시 가스압력이 성형품의 강성에 미치는 영향)

  • Park, Gyun-Myeong;Park, Bong-Hyeon;Lee, Seong-Hui;Kim, Cheong-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.102-109
    • /
    • 2000
  • In the present study, gas-assisted molding and structural vibration analysis of hollow long cylinder with the variation of gas injection pressure are performed. Though there are so many parameters such as delay time, injection pressure, and gas pressure on gas-assisted molding, the latter has the most dominant effect on this process. Therefore, the present paper deals with the effects of gas pressure on the dynamic stiffness of the model by means of vibration analysis and then suggests the fundamental materials which can be directly adapted to manufacturing lines.

  • PDF

A Study on the Thermal Stress Analysis of Axi-Symmetric Hollow Cylinder (축대칭 중공실린더의 길이방향 온도분포하의 열탄성응력 해석에 관한 연구)

  • Lee, Sang-Jin;Cho, Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3152-3159
    • /
    • 1996
  • Previous works about the cylindrical shape elastic body which is under longitudinal temperature distribution mostly show the results of free expansion, therefore exact thermo-elastic analysis is needed. The object of this work is to analyze the thermo-elastic problem of the hollow cylinder when the cylinder is under longitudinal temperature distribution. In this paper, the analytical solution is found by using Galerkin vector, and it is compared by the results of FEM. For displacements of cylinder, analytical values are almost same as the results of FEM, but free expansion is not fit for analytical solution and the results of FEM. stresses from analytical solution and the results of FEM show good agreement also. but the results are different near the end boundary, since St. Venant principle is applied.

Influence of Environmental Conditions on the Sensitivity of a Mandrel Type Fiber Optic Acoustic Sensor (주위 환경이 맨드릴형 광-음향센서의 감도특성에 미치는 영향)

  • 임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.8-12
    • /
    • 2000
  • This paper describes the sensitivity stability of a mandrel type fiber optic acoustic sensor with respect to its environmental conditions such as hydrostatic pressure and underwater temperature. The sensors under consideration have various mandrel structures such as a cylindrical mandrel, a concentric composite mandrel, and an air-backed concentric composite mandrel. The analysis results show that the sensors have such good robustness, less than 0.15dB, in its sensitivity with respect to the variation in hydrostatic pressure. Further, the nylon concentric composite mandrel type sensor including an air cavity turns out to have the most superior stability than others to the underwater temperature variations.

  • PDF

Designs of fiber-optic mandrel acoustic sensor with an analytical method (해석적 방법에 의한 멘드릴 광섬유 음향센서의 설계)

  • 임종인
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.255-258
    • /
    • 1998
  • 본 연구에서는 해석적인 방법을 사용하여 고감도 멘드릴형 광섬유 음향센서를 설계하고자 하였다. 음향감지부의 형상으로 실린더형 멘드릴 및 중공원통형 층상복합체 멘드릴을 선정하고, 음향감도에 대한 이론식을 유도하여 재질변수 및 형상변수 등에 따른 음향감도를 해석하였다. 또한 해석적 방법 및 유한요소법을 이용한 분석결과를 비교하여 해석적인 방법의 타당성을 검증하였다. 그 결과, 멘드릴의 외경변화에 의한 감도변화 경향만이 다소 차이를 보이고 있으나 그 이외의 재질변수 및 형상변수에 의한 음향감도 변화 경향은 서로 잘 일치하는 것으로 분석되었다.

  • PDF

Thermal Analysis of Ballscrew Systems by Explicit Finite Difference Method (현시적 유한차분법을 이용한 볼나사 시스템의 열해석)

  • Min, Bog-Ki;Park, Chun-Hong;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Friction generated from balls and grooves incurs temperature rise in the ballscrew system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ballscrew shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ballscrew. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

A Combination Study on the Elevation Motion Friction Compensation Parameters in Gas Spring (1) (가스 스프링 Elevation 동작 마찰력 보상 변수 조합 연구 (1))

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.657-666
    • /
    • 2017
  • In this study, factor analysis was performed to reduce the friction in the elevation motion of a stand for a 50-inchtelevision. Pipe type cross-section control was used for accurate positioning control of the piston rod. The pipe type was also compared with a labyrinth-type crosssection for the orifice. The frictional force was then reduced using gas seal lip technology. Specifications were chosen, and a volume compensation experiment was carried out using an apparatus for compensating the volume of the cylinder, which is compressed by the volume of the piston rod. Based on CAE and experimental considerations, the labyrinth-type orifice is preferred for reducing friction. For the gas seal lip technology, outer and inner diameters of ${\Phi}20$ and ${\Phi}8$ for the hollow rod were more appropriate when assuming the weight of a 50-inch television to be 30kgf. The third is that the result of total consideration in stability problem and performance of volume compensation for specification decision and volume compensation experiment is determined the final speculation of hollow rod ?8x?4 and riveting system. The last is that the labyrinth orifice is not founded that of the ${\O}0.4{\sim}0.6$ orifice both tests on 300 mm intervals.