• Title/Summary/Keyword: 중간엽줄기세포

Search Result 83, Processing Time 0.02 seconds

Effect of DMfree (GTE) on Gene Array Profile of M. leprae Infected Mesenchymal Stem Cells (디엠프리(녹차 추출물)가 나균 감염 중간엽 줄기세포의 유전자 발현에 미치는 영향)

  • Park, Ran-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.2
    • /
    • pp.267-273
    • /
    • 2014
  • This study found antibacterial activity of $DMfree^{(R)}$ [green tea extract] on facultative bacteria by direct petri dish method and gene array of obligatory M. leprae infected mesenchymal stem cells (MSC). While DMfree showed DPPH radical scavenging effect and high contents of polyphenol, it did not inhibit growth of facultative bacteria such as E. coli and S. aureus on the petri dish. The result does not exclude a possible antibacterial effect of organic solvent extract of green tea rather than DMfree which comes from the water extract of green tea. Pre-treatment of DMfree appeared to have no effect on copy number of 14 genes compared with control MSC by real-time RT-PCR. However pre-treatment of DMfree on M. leprae infected MSC revealed a significant decrease of anti-inflammatory cytokine (IL-6), (P<0.038) and sharp down-regulation of pro-inflammatory cytokine (IL-1). Enhanced expression of VEGFR-1 mRNA was noted in DMfree pretreated M. leprae infected MSC group (P<0.003). These results show that DMfree would stabilize M. leprae infected MSC from further inflammation by down-regulating anti-inflammatory cytokine (IL-6) and pro-inflammatory cytokine (IL-$1{\beta}$). This is the first report on DMfree inhibition of IL-6 and IL-$1{\beta}$ expression in M. leprae infected MSC. Further experiments that detect protein levels of IL-$1{\beta}$ and IL-6 may support the result of this gene array.

Activation of Caspase-3 and -7 on Porcine Bone Marrow Derived Mesenchymal Stem Cells (pBM-MSCs) Cryopreserved with Dimethyl Sulfoxide (DMSO) (동결 보호제(DMSO) 농도에 따른 돼지 중간엽 줄기세포의 Caspase 3과 7 발현)

  • Ock, Sun-A;Rho, Gyu-Jin
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.183-187
    • /
    • 2012
  • Adult stem cell transplantation has been increased every year, because of the lack of organ donors for regenerative medicine. Therefore, development of reliable and safety cryopreservation and bio-baking method for stem cell therapy is urgently needed. The present study investigated safety of dimethyl sulfoxide (DMSO) such as common cryoprotectant on porcine bone marrow derived mesenchymal stem cells (pBM-MSCs) by evaluating the activation of Caspase-3 and -7, apoptosis related important signal pathway. pBM-MSCs used for the present study were isolated density gradient method by Ficoll-Paque Plus and cultured in A-DMEM supplemented 10% FBS at $38.5^{\circ}C$ in 5% $CO_2$ incubator. pBM-MSCs were cryopreserved in A-DMEM supplemented either with 5%, 10% or 20% DMSO by cooling rate at $-1^{\circ}C$/min in a Kryo 360 (planner 300, Middlesex, UK) and kept into $LN_2$. Survival rate of cells after thawing did not differ between 5% and 10% DMSO but was lowest in 20% DMSO by 0.4% trypan blue exclusion. Activation of Caspase-3 and -7 by Vybrant FAM Caspase-3 and -7 Assay Assay Kit (Molecular probes, Inc.OR, USA) was analyzed with a flow cytometer. Both of cryopreserved and control groups (fresh pBM-MSCs) were observed after the activation of Caspase-3 and -7. The activation did not differ between 5% and 10% DMSO, but was observed highest in 20% DMSO. Therefore 5% DMSO can be possibly used for cell cryopreservation instead of 10% DMSO.

Characterization and Differentiation of Synovial Fluid Derived Mesenchymal Stem Cells from Dog (개 관절 윤활액 유래 중간엽 줄기세포의 특성과 분화능 분석)

  • Lee, Jeong-Hyeon;Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • The synovial tissues are a valuable MSCs source for cartilage tissue engineering because these cells are easily obtainable by the intra-articular biopsy during diagnosis. In this study, we isolated and characterized the canine MSCs derived from synovial fluid of female and male donors. Synovial fluid was flushed with saline solution from pre and post-puberty male (cM1-sMSC and cM2-sMSC) and female (cF1-sMSC and cF2-sMSC) dogs, and cells were isolated and cultured in advanced-DMEM (A-DMEM) supplemented with 10% FBS in a humidified 5% $CO_2$ atmosphere at $38.5^{\circ}C$. The cells were evaluated for the expression of the early transcriptional factors, such as Oct3/4, Nanog and Sox2 by RT-PCR. The cells were induced under conditions conductive for adipogenic, osteogenic, and chondrogenic lineages, then evaluated by specific staining (Oil red O, von Kossa, and Alcian Blue staining, respectively) and analyzed for lineage specific markers by RT-PCR. All cell types were positive for alkaline phosphatase (AP) activity and early transcriptional factors (Oct3/4 and Sox2) were also positively detected. However, Nanog were not positively detected in all cells. Further, these MSCs were observed to differentiate into mesenchymal lineages, such as adipocytes (Oil red O staining), osteocytes (von Kossa staining), and chondrocytes (Alcian Blue staining) by cell specific staining. Lineage-specific genes (osteocyte; osteonectin and Runx2, adipocytes; PRAR-${\gamma}2$, FABP and LEP, and chondrocytes; collagen type-2 and Sox9) were also detected in all cells. In this study, we successfully established synovial fluid derived mesenchymal stem cells from female and male dogs, and determined their basic biological properties and differentiation ability. These results suggested that synovial fluid is a valuable stem cell source for cartilage regeneration therapy, and it is easily accessible from osteoarthritic knee.

MicroRNA-200a/210 Controls Proliferation and Osteogenic Differentiation of Human Adipose Tissue Stromal Cells (MicroRNA-200a/210의 인체 지방 유래 중간엽 줄기세포 골분화 및 증식 조절 기전)

  • Kim, Young Suk;Park, Hee Jeong;Shin, Keun Koo;Lee, Sun Young;Bae, Yong Chan;Jung, Jin Sup
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.767-782
    • /
    • 2017
  • MicroRNAs control the differentiation and proliferation of human adipose tissue-derived stromal cells (hADSCs). However, the role of miR-200a and miR210 on the osteogenic differentiaton of hADSCs has not been determined. hADSCs were isolated from human adipose tissues. Direct binding of mircoRNA to target mRNAs was determined by luciferase assay of the constructs containing putative microRNA binding sites within 3' untranslated region of target mRNAs. Overexpression of miR-200a increased the proliferation and osteogenic differentiation of hADSCs, while causing downregulation of the levels of ZEB2. Inhibition of miR-200a with antisense RNAs inhibited the proliferation and osteogenic differentiation of hADSCs. Overexpression of miR-210 was found to inhibit the proliferation of hADSCs but increase the osteogenic differentiation, while causing downregulation of the levels of IGFBP3. Inhibition of miR-210 with antisense RNAs increased the proliferation but inhibited the osteogenic differentiation of hADSCs. Analysis of the luciferase activity of the constructs containing the miR-200a target site within the ZEB2 3' region and the miR-210 target site within the IGFBP3 3' region revealed lower activity in the miR-200a- or miR-210-transfected hADSCs than in control miRNA-transfected hADSCs. Downregulation of ZEB2 or IGFBP3 in the hADSCs showed similar effects on both their proliferation and osteogenic differentiation with that of miR-200a and miR-210 overexpression, respectively. The results of the current study indicate that miR-200a and miR-210 regulate the osteogenic differentiation and proliferation of hADSCs through the direct targeting of IGFBP3 and ZEB2, respectively.

Radioprotective Effect of Red Ginseng in Irradiated Mice with ${\gamma}$-ray (생쥐에서 홍삼의 감마선조사에 의한 방어효과)

  • Seung, Ka-Yeon;Lee, Heung-Man;Kim, Jong-Sang;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.1
    • /
    • pp.31-35
    • /
    • 2010
  • Recently, the incidents of direct or indirect radiation exposure due to increase of use of radiation or radioisotope are on the increase in medical and industrial circles. If cells are irradiated, free radicals are created through biological process, and cells are directly or indirectly damaged. This research intends to explore into the effect of saponin at the level of cell (in vitro) and entity (in vivo), using red ginseng extract "saponin", as radioprotective agent. In the experiment implemented at the level of cell (in vitro), degree of cell activity was measures by adding mouse mesenchymal stem cells "C3H/10T1/2 cells" into red ginseng extract "saponin(0, 0.05, 0.2, and 0.4 g/L)", and then the optimal concentration of saponin influencing cells was calculated, in 24, 48, 72, and 96 hours after gamma irradiation at the optimal concentration of saponin, each cell survival rate was observed through XTT assay. The best time period of cultivation for the optimal activity of C3H/10T1/2 cells was as 48 hours, and the degree of optimal activity was shown at 0.05 g/L. In 48 hours after irradiation of 5 Gy to C3H/10T1/2 cells at 0.05 g/L, the degree of activity of cells increased by 10%. In the experiment implemented at the level of entity (in vivo), red ginseng extract "saponin" at a dose of 100 mg/kg/day was injected into the abdominal cavity of six-week immature mouse for two weeks. Right after the last abdominal injection, total body irradiation of gamma rays was carried out at a dose of 5 Gy and 10 Gy. And after irradiation, the blood sample was taken, and then the number of red corpuscles was counted. In result, the decrement of experimental group treated with red ginseng extract "saponin" was 2.3 times larger than that of control group. In view of the results so far achieved, it was revealed that red ginseng extract "saponin" has a radiation exposure protection effect in the experiment implemented at the level of cell (in vitro). In case of animal experiment, the decrement of number of red corpuscles decreased. Finally, it is necessary to carry out more various researches continuously.

Functional recovery after transplantation of mouse bone marrow-derived mesenchymal stem cells for hypoxic-ischemic brain injury in immature rats (저산소 허혈 뇌 손상을 유발시킨 미성숙 흰쥐에서 마우스 골수 기원 중간엽 줄기 세포 이식 후 기능 회복)

  • Choi, Wooksun;Shin, Hye Kyung;Eun, So-Hee;Kang, Hoon Chul;Park, Sung Won;Yoo, Kee Hwan;Hong, Young Sook;Lee, Joo Won;Eun, Baik-Lin
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.824-831
    • /
    • 2009
  • Purpose : We aimed to investigate the efficacy of and functional recovery after intracerebral transplantation of different doses of mouse mesenchymal stem cells (mMSCs) in immature rat brain with hypoxic-ischemic encephalopathy (HIE). Methods : Postnatal 7-days-old Sprague-Dawley rats, which had undergone unilateral HI operation, were given stereotaxic intracerebral injections of either vehicle or mMSCs and then tested for locomotory activity in the 2nd, 4th, 6th, and 8th week of the stem cell injection. In the 8th week, Morris water maze test was performed to evaluate the learning and memory dysfunction for a week. Results : In the open field test, no differences were observed in the total distance/the total duration (F=0.412, P=0.745) among the 4 study groups. In the invisible-platform Morris water maze test, significant differences were observed in escape latency (F=380.319, P<0.01) among the 4 groups. The escape latency in the control group significantly differed from that in the high-dose mMSC and/or sham group on training days 2-5 (Scheffe's test, P<0.05) and became prominent with time progression (F=6.034, P<0.01). In spatial probe trial and visible-platform Morris water maze test, no significant improvement was observed in the rats that had undergone transplantation. Conclusion : Although the rats that received a high dose of mMSCs showed significant recovery in the learning-related behavioral test only, our data support that mMSCs may be used as a valuable source to improve outcome in HIE. Further study is necessary to identify the optimal dose that shows maximal efficacy for HIE treatment.

Expression of HLA and Mixed Lymphocyte Reaction of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood (제대혈 유래 중간엽줄기세포에서 HLA의 발현과 Mixed Lymphocyte Reaction)

  • Lee, Hyo-Jong;kang, Sun-Young;Park, Se-Jin;Lee, Seung-Yong;Lee, Hee-Chun;Koh, Phil-Ok;Park, Ji-Kwon;Paik, Won-Young;Yeon, Seong-Chan
    • Journal of Veterinary Clinics
    • /
    • v.28 no.4
    • /
    • pp.399-402
    • /
    • 2011
  • In recent years, the mesenchymal stem cells (MSC) derived from various tissues have been widely tested for developing cell therapies, tissue repair and transplantation. Although there has been much interest in the immunomodulatory properties of MSC and their immunologic reactions following autologous, allogeneic and xenogenic transplantation of MSC in vivo, up to date, the expression of immunogenic markers, such as class I and II human leukocyte antigens (HLA), after differentiation of human umbilical cord blood (hUCB)-derived MSC has been poorly investigated and require extensive in vitro and in vivo testing. In this experiment, the expression of the HLA-ABC and HLA-DR on hUCB-derived MSC have been tested by immunocytochemical staining. The undifferentiated MSC were moderately stained for HLA-ABC but very weakly for HLA-DR. In order to investigate the inhibitory effect of allogeneic lymphocytes on proliferation of MSC, the MSC were cultured in the presence or absence of peripheral allogeneic lymphocytes stimulated with concanavalin A. The allogeneic lymphocytes did not significantly inhibit MSC proliferation. We conclude that hUCB-MSC expressed moderately class I HLA antigen while almost negatively class II HLA antigen. The MSC have an immunomodulatory effect which can suppress the allogeneic response of lymphocytes. These in vitro data suggest that allogeneic MSC derived from cord blood can be useful candidate for allogeneic cell therapy and transplantation without a major risk of rejection.

Comparative Analysis on Anti-aging, Anti-adipogenesis, and Anti-tumor Effects of Green Tea Polyphenol Epigallocatechin-3-gallate (녹차의 폴리페놀류인 에피갈로카테킨-3-갈레이트에 의한 항노화, 항비만 및 항암효과에 대한 비교 분석)

  • Lim, Eun-Ji;Kim, Min-Jae;Kim, Hyeon-Ji;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1201-1211
    • /
    • 2018
  • The study compared the anti-aging, anti-adipogenesis, and anti-tumor effects of epigallocatechin-3- gallate (EGCG) in various cancer cell lines (SNU-601, MKN74, AGS, MCF-7, U87-MG, and A-549) and normal cell lines (MRC-5 fibroblasts, dental tissue-derived mesenchymal stem cells [DSC], and 3T3-L1 pro-adipocytes). Half inhibitory concentration ($IC_{50}$) values were significantly (p<0.05) higher in normal cell lines (~50 uM), when compared to that in cancer cell lines (~10 uM). For anti-aging effects, MRC-5 and DSC were exposed to 10 uM EGCG for up to five passages that did not display any growth arrest. Population doubling time and senescence-related ${\beta}-galactosidase$ ($SA-{\beta}-gal$) activity in treated cells were similar to untreated cells. For anti-adipogenic effects, mouse 3T3-L1 pre-adipocytes were induced to adipocytes in an adipogenic differentiation medium containing 10 uM EGCG, but adipogenesis in 3T3-L1 cells was not inhibited by EGCG treatment. For anti-tumor effects, the cancer cell lines were treated with 10 uM EGCG. PDT was significantly (p<0.05) increased in EGCG-treated SNU-601, AGS, MCF-7, and U87-MG cancer cell lines, except in MKN74 and A-549. The level of telomerase activity and cell migration capacity were significantly (p<0.05) reduced, while $SA-{\beta}-gal$ activity was highly up-regulated in EGCG treated-cancer cell lines, when compared to that in untreated cancer cell lines. Our results have demonstrated that EGCG treatment induces anti-tumor effects more efficiently as noted by decreased cell proliferation, cell migration, telomerase activity, and increased $SA-{\beta}-gal$ activity than inducing anti-aging and anti-adipogenesis. Therefore, EGCG at a specific concentration can be considered for a potential anti-tumor drug.

Twenty-year Experience of Mitral Valve Replacement with the St. Jude Medical Mechanical Valve Prosthesis (St. Jude 기계 판막을 이용한 승모판막 치환술의 20년 장기성적)

  • Seo Yeon-Ho;Kim Kong-Soo;Jo Jung-Ku
    • Journal of Chest Surgery
    • /
    • v.39 no.7 s.264
    • /
    • pp.527-533
    • /
    • 2006
  • Background: A retrospective study was conducted to analyze the results of St. Jude Medical mitral valve replacement at the Chonbuk National University Hospital since the initial implant in May 1984. Material and Method: Between May of 1984 and December of 1996, 95 patients underwent MVR with the St. Jude Medical mechanical valve prosthesis at Department of Medical Science of Chonbuk National University Hospital and follow-up ended in May of 2004. Result: Age ranged from 19 to 69 years. Follow-up (mean${\pm}$standard deviation) averaged $10.6{\pm}4.2\;year$. Thirty-day operative mortality was 4.2% (4/95). Nine late deaths have occurred and actuarial survival was $90.5{\pm}3.0%,\;87.9{\pm}3.4%\;and\;83.2{\pm}4.6%$ at 5, 10 and 20 years, respectively. Probability of freedom from valve-rotated death was $95.5{\pm}2.1%,\;94.3{\pm}2.4%\;and\;91.0{\pm}3.9%$ at 5, 10 and 20 years, respectively. Seven patients have sustained thromboembolic events (1,05%/patient-year). Fifteen patients had anticoagulation related hemorrhage (3.56%/patient-year). There was no structural valve deterioration. Probability of freedom from all complications was $82.0{\pm}3.9%,\;71.3{\pm}4.8%\;and\;42.4{\pm}10.5%$ at 5, 10 and 20 years, respectively. Conclusion: We confirm the effective and excellent durability of the St. Jude Medical prosthesis in the mitral position with a low event rate at long-term follow-up. It also demonstrates the commonly encountered practical difficulty of adjusting the anti-coagulation protocol in patients with prosthetic mitral valves.

Effect of Repetitive Magnetic Stimulation on Proliferation and Viability of Adipose Tissue-Derived Stromal Cells (반복자기자극이 지방유래 중간엽 줄기세포 증식과 활성에 미치는 영향)

  • Kim, Su-Jeong;Park, Hea-Woon;Cho, Yun-Woo;Lee, Joon-Ha;Seo, Jeong-Min;Shin, Hyoun-Jin;Kang, Jae-Hoon;Ahn, Sang-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.3
    • /
    • pp.87-93
    • /
    • 2009
  • Purpose: TThis study examined the effect of repetitive magnetic stimulation (RMS) on the viability and proliferative response of human adipose tissue-derived stromal cells (hATSCs) in vitro. Methods: The hATSCs were cultured primarily from human adipose tissue harvested by liposuction and incubated in a $37^{\circ}C$ plastic chamber. The cells were exposed to a repetitive magnetic field using a customized magnetic stimulator (Biocon-5000, Mcube Technology). The RMS parameters were set as follows: repetition rate=10Hz, 25Hz (stimulus intensity 100%= 0.1 Tesla, at 4cm from the coil), stimulated time= 1, 5, and 20 minutes. Twenty four hours after one application of RMS, the hATSCs were compared with the sham stimulation, which were kept under the same conditions without the application of RMS. The cells were observed by optical microscopy to determine the morphology and assessed by trypan blue staining for cell proliferation. The apoptosis and viability of the hATSCs were also analyzed by fluorescence-activated cell sorting (FACS) analysis of Annexin V and MTT assay. Results: After RMS, the morphology of the hATSCs was not changed and the apoptosis of hATSCs were not increased compared to the sham stimulation. The viability of the cells was similar to the cells given the sham stimulation. Interestingly, the level of hATSC proliferation was significantly higher in all RMS groups. Conclusion: The application of RMS may not cause a change in morphology and viability of hATSCs but can increase the level of cell proliferation in vitro. RMS might be useful as an adjuvant tool in combination with stem cell therapy without adverse effects.

  • PDF