In this paper, we analysis the semi-supervised learning (SSL), which is adopted in order to train a deep learning-based classification model using the small number of labeled data. The conventional SSL techniques can be categorized into consistency regularization, entropy-based, and pseudo labeling. First, we describe the algorithm of each SSL technique. In the experimental results, we evaluate the classification accuracy of each SSL technique varying the number of labeled data. Finally, based on the experimental results, we describe the limitations of SSL technique, and suggest the research direction to improve the classification performance of SSL.
Seo, Jaehyung;Oh, Dongsuk;Eo, Sugyeong;Park, Sungjin;Lim, Heuiseok
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.495-500
/
2020
뉴스 기사는 반드시 객관적이고 넓은 시각으로 정보를 전달하지 않는다. 따라서 뉴스 기사를 기존의 추천 시스템과 같이 개인의 관심사나 사적 정보를 바탕으로 선별적으로 추천하는 것은 바람직하지 않다. 본 논문에서는 최대한 객관적으로 다양한 시각에서 비슷한 사건과 인물에 대해서 판단할 수 있도록 유사도 기반의 기사 추천 모델을 제시한다. 길이가 긴 문서 사이의 유사도를 측정하기 위해 GPT2 [1]언어 모델을 활용했다. 이 과정에서 단방향 디코더 모델인 GPT2 [1]의 단점을 추가 학습으로 개선했으며, 저장 공간의 효율과 핵심 문단 추출을 위해 BM25 [2]함수를 사용했다. 그리고 준 지도 학습 [3]을 통해 유사도 레이블링이 되어있지 않은 최신 뉴스 기사에 대해서도 자가 학습을 진행했으며, 이와 함께 길이가 긴 문단에 대해서도 효과적으로 학습할 수 있도록 문장 길이를 기준으로 3개의 단계로 나누어진 커리큘럼 학습 [4]방식을 적용했다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.2
/
pp.165-171
/
2017
It is difficult to recognize Human's facial expression in the real-world. For these reason, when database and test data have similar condition, we can accomplish high accuracy. Solving these problem, we need to many facial expression data. In this paper, we propose the algorithm for gathering many facial expression data within various environment and gaining high accuracy quickly. This algorithm is training initial model with the ASSL (Active Semi-Supervised Learning) using deep learning network, thereafter gathering unlabeled facial expression data and repeating this process. Through using the ASSL, we gain proper data and high accuracy with less labor force.
Hwang, Insung;Lee, Sang Hwa;Park, Jae Sung;Cho, Nam Ik
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.169-172
/
2015
본 논문에서는 준 지도 학습에 기반한 중요 객체 검출 방법을 제안한다. 첫째, 색상과 공간 정보를 활용하여 이미지를 분할한 후, 분할된 영역을 색상의 유사도로 연결하여 그래프를 만든다. 둘째, 색 대비 및 가장자리 사전 지식을 활용하여 중요 객체에 해당하는 씨앗 노드와 배경에 해당하는 씨앗 노드를 추출한다. 끝으로, 중요 객체 및 배경 씨앗 노드를 이용하여 준 지도학습 기법에 적용함으로써 이미지 전체 노드의 중요도를 계산한다. 실험 결과, 제안한 알고리즘이 최신의 다른 알고리즘보다 높은 재현율 구간에서 높은 정밀도를 보임을 확인할 수 있고, 시각적으로도 좋은 성능을 보임을 확인할 수 있다.
Recently, machine learning algorithms based on artificial neural networks started to be used widely as classifiers in the field of EEG research for emotion analysis and disease diagnosis. When a machine learning model is used to classify EEG data, if training data is composed of only data having similar characteristics, classification performance may be deteriorated when applied to data of another group. In this paper, we propose a method to construct training data set by selecting several groups of data using semi-supervised learning algorithm to improve these problems. We then compared the performance of the two models by training the model with a training data set consisting of data with similar characteristics to the training data set constructed using the proposed method.
Jo, Yo-Han;Oh, Hyo-Jung;Lee, Chung-Hee;Kim, Hyun-Ki
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.33-38
/
2013
소셜미디어를 통한 여론분석과 브랜드 모니터링에 대한 요구가 증가하면서, 빅데이터로부터 감성을 분석하는 기술에 대한 필요가 늘고 있다. 이를 위해, 본 논문에서는 단순 긍/부정 감성이 아닌 20종류의 세분화된 감성을 분석하기 위한 감성어휘 구축 알고리즘을 제시한다. 감성어휘 구축을 위해서는 준지도학습을 사용하였으며, 도메인에 특화되지 않은 일반 감성어휘를 구축하도록 학습되었다. 학습된 감성어휘를 인물, 스마트기기, 정책 등 다양한 도메인의 트위터 데이터에 적용하여 세부감성을 분석한 결과, 알고리즘의 특성상 재현율이 낮다는 한계를 가지고 있었으나, 대부분의 감성에 대해 높은 정확도를 지닌 감성어휘를 구축할 수 있었고, 감성을 직간접적으로 나타내는 표현들을 학습할 수 있었다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.107-112
/
2023
라벨 데이터 수집의 어려움에 따라 라벨이 없는 데이터로 학습하는 준지도학습, 비지도학습에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 그의 일환으로 Novel Intent Category Discovery(NICD) 문제를 제안하고 NICD 연구의 베이스라인이 될 모델을 소개한다. NICD 문제는 라벨이 있는 데이터와 라벨이 없는 데이터의 클래스 셋이 겹치지 않는다는 점에서 기존 준지도학습의 문제들과 차이가 있다. 제안 모델은 RoBERTa를 기반으로 두 개의 분류기를 추가하여 구성되며 라벨이 있는 데이터셋과 라벨이 없는 데이터셋에서 각각 다른 분류기를 사용하여 라벨을 예측한다. 학습방법은 2단계로 먼저 라벨이 있는 데이터셋으로 요인표현을 학습한다. 두 번째 단계에서는 교차 엔트로피, 이항교차 엔트로피, 평균제곱오차, 지도 대조 손실함수를 NICD 문제에 맞게 변형하여 학습에 사용한다. 논문에서 제안된 모델은 라벨이 없는 데이터셋에 대해 이미지 최고성능 모델보다 24.74 더 높은 정확도를 기록했다.
The Journal of Korean Association of Computer Education
/
v.23
no.1
/
pp.77-90
/
2020
The purpose of the study is to provide educational implications for more effective Problem-based learning(PBL) by investigating students' learning types based on their online learning behaviors. A total of 1,341 students participated in the study, and they engaged in a six-week-long PBL program run by K University. For the study, participants' online activity data were collected. From the data, a total of 48 variables that represent their various online learning behaviors were extracted. Based on the variables, hierarchical cluster analysis was conducted to analyze learning types. Also, the differences in learning characteristics and achievements were investigated by considering types of learning. As a result, the learning types in online PBL were classified as 'high-level participation (cluster 1)', 'medium-level participation (cluster 2)', and 'low-level participation (cluster 3)'. In addition, the achievement level was found to be highest in 'high-level participation (cluster 1)' and lowest in 'low-level participation (cluster 3)'. Based on the results, the implications for improving online PBL were suggested.
The Journal of Korean Association of Computer Education
/
v.22
no.5
/
pp.51-65
/
2019
This study aims to provide educational implications for more strategic online software education by the types of online learning according to learners' self-regulated learning characteristics in the online software education environment and examining the characteristics of each type. For this, variables related to self-regulated learning characteristic were extracted from the log data of 809 students participating in the online software learning program of K University, and then analyzed using hierarchical cluster analysis. Based on hierarchical cluster analysis learner clusters according to the characteristics of self-regulated learning were derived and the differences between learners' learning characteristics and learning results according to cluster types were examined. As a result, the types of self-regulated learning of online software learners were classified as 'high level self-regulated learning type (group 1)', 'medium level self-regulated learning type (group 2)', and 'low level self-regulated learning type (group 3)'. The achievement level was found to be highest in 'high-level self-regulated learning type (group 1)' and 'low-level self-regulated learning type (group 3)' was the lowest. Based on these results, the implications for effective online software education were suggested.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.798-800
/
2024
현대의 머신러닝 환경에서는 특히 모바일 컴퓨팅 및 사물 인터넷(IoT)의 애플리케이션 영역에서 개인 정보를 보호하고 효율적이며 확장 가능한 모델에 대한 관심이 높아지고 있다. 본 연구는 연합 학습(FL)과 자기지도 학습(self-supervised learning)을 결합하여 이질적(heterogeneous)인 분산 자원에서 레이블이 없는 데이터를 활용하면서 사용자의 개인 정보를 보호하는 새로운 프레임워크를 소개한다. 이 프레임워크의 핵심은 SimCLR 과 같은 자기지도 학습 기법으로 학습된 공유 인코더로, 입력 데이터에서 고수준 특성을 추출하도록 설계되었다. 또한 이 구조를 통해 주석(annotation)이 없는 방대한 데이터셋을 활용하여 모델 성능을 향상시키고, 여러 개의 격리된 모델이 필요하지 않아 리소스를 크게 최적화할 수 있는 가능성을 확인했다. 본 연구를 통해 생성된 모델은 중앙 집중 방식(CL)이면서 자기지도학습으로 학습되지 않은 기존 모델과 비교하여 전체 평균 정확도가 14.488% 향상됐다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.