Acknowledgement
본 성과는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구이며(NRF-2022R1A2C4001270), 과학기술정보통신부 및 정보통신기획평가원의 대학 ICT 연구센터육성지원사업의 연구결과로 수행되었음 (IITP-2022-2020-0-01602).
References
- Brendan McMahan, et al. "Communication-efficient learning of deep networks from decentralized data", Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017, 1273-1282.
- Chen, Ting, et al. "A simple framework for contrastive learning of visual representations", Proceedings of the IEEE conference on computer vision and pattern recognition, 2020, 1597-1607.
- He, Kaiming, et al. "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770-778.
- Nilsback, Maria-Elena, and Andrew Zisserman. "Automated flower classification over a large number of classes." 2008 Sixth Indian conference on computer vision, graphics & image processing. IEEE, 2008. (https://www.robots.ox.ac.uk/~vgg/data/flowers/102/)
- Puneet Bansal, "Intel Image Classification.", Kaggle, Jun 2019, https://www.kaggle.com/datasets/puneet6060/intel-image-classification, accessed: Apr 2024.